مروری بر ویژگی های ساختاری و عملکردی سلول های سرتولی بیضه

نوع مقاله : مقاله ترویجی

نویسندگان

1 دانشکده زیست فناوری، دانشگاه تخصصی فناوری های نوین آمل

2 دانشکده زیست فناوری دانشگاه تخصصی فناوریهای نوین آمل، ایران

3 گروه آناتومی و بیولوژی سلولی، مرکز تحقیقات ایمنوژنتیک، دانشکده پزشکی، دانشگاه علوم پزشکی مازندران، ساری، ایران

چکیده

واحد عملکردی تولید مثلی جنس مذکر در پستانداران بیضه است که با دارا بودن ویژگی‌های شیمیایی و فیزیکی ویژه‌ای توان تولید‌مثلی مذکر را بیان می‌کند ؛ هر بیضه در پستانداران از لوله‌های پیچیده تشکیل شده که از نظر مورفولوژیکی و فیزیولوژیکی به بخش های عملکردی متفاوت تقسیم می‌شود که هر کدام از این بخش‌ها شامل سلول‌های تخصص یافته‌ای هستند که امروزه هر کدام در شاخه‌های بسیار مهم تحقیقاتی حائز اهمیت‌اند ؛ در این مقاله سعی برآن داشتیم که سلول‌هایی سوماتیکی و ویژه‌ای به نام سلول‌های سرتولی را مورد بحث و بررسی قرار دهیم ؛ این سلول ها بخشی از لوله های اسپرم‌ساز‌اند که از بخش پایه (بازال) تا لومن آن کشیده شده است و مانند چادری سراسر لوله های اسپرم ساز را می پوشانند که این فرم مورفولوژیکی قطعا با نقش های عملکردی و فیزیولوژیکی آن ها مرتبط است ؛ نکته جالب و مورد توجه که به عنوان پایه و اساس بسیاری از تحقیقات انجام شده روی این سلول هاست، عدم تقسیم پذیری سلول های سرتولی در نیش خود است اما می توان پس از استخراج آن ها، به روش های متفاوتی مانند پلیت کردن با لکتین (به دلیل تمایل اتصال آن ها به لکتین بعد از هضم آنزیمی بافت بیضه) در محیط کشت های ویژه و شرایط آزمایشگاهی، آن ها را وادار به تقسیم کرد که این با توجه به نقش های اساسی در حمایت فیزیکی و شیمیایی از سلول های جنسی ، طی مراحل اسپرماتوژنز ، می تواند آینده ای روشن را در حل مشکلات ناباروری رقم بزند.

کلیدواژه‌ها

  1. Ramos Robles, B., et al., Immunoendocrine abnormalities in the male reproductive system during experimental pulmonary tuberculosis. Tuberculosis (Edinb), 2018. 109: p. 109-116.
  2. Azizi, H., et al., Derivation of Pluripotent Cells from Mouse SSCs Seems to Be Age Dependent. Stem Cells Int, 2016. 2016: p. 8216312.
  3. Azizi, H., et al., Differential Proliferation Effects after Short-Term Cultivation of Mouse Spermatogonial Stem Cells on Different Feeder Layers. Cell J, 2019. 21(2): p. 186-193.
  4. Azizi, H., T. Skutella, and A. Shahverdi, Generation of Mouse Spermatogonial Stem-Cell-Colonies in A Non-Adherent Culture. Cell J, 2017. 19(2): p. 238-249.
  5. Conrad, S., H. Azizi, and T. Skutella, Single-Cell Expression Profiling and Proteomics of Primordial Germ Cells, Spermatogonial Stem Cells, Adult Germ Stem Cells, and Oocytes. Adv Exp Med Biol, 2018. 1083: p. 77-87.
  6. Zhuang, M., et al., Reelin regulates male mouse reproductive capacity via the sertoli cells. Journal of Cellular Biochemistry, 2019. 120(2): p. 1174-1184.
  7. Abofoul-Azab, M., et al., Identification of Premeiotic, Meiotic, and Postmeiotic Cells in Testicular Biopsies Without Sperm from Sertoli Cell-Only Syndrome Patients. International Journal of Molecular Sciences, 2019. 20(3): p. 470.
  8. Duan, P., et al., 4-Nonylphenol effects on rat testis and sertoli cells determined by spectrochemical techniques coupled with chemometric analysis. Chemosphere, 2019. 218: p. 64-75.
  9. Gurvinder, K., et al., Sertoli Cells Engineered to Express Insulin to Lower Blood Glucose in Diabetic Mice. DNA and Cell Biology, 2018. 37(8): p. 680-690.
  10. Berger, T. and B.J. Nitta-Oda, Increased testicular estradiol during the neonatal interval reduces Sertoli cell numbers. Animal Reproduction Science, 2018. 189: p. 146-151.
  11. Zanatta, A.P., et al., New ionic targets of 3,3′,5′-triiodothyronine at the plasma membrane of rat Sertoli cells. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2019. 1861(4): p. 748-759.
  12. Zhang, J.J., et al., Identification of microRNAs for regulating adenosine monophosphate-activated protein kinase expression in immature boar Sertoli cells in vitro. Mol Reprod Dev, 2019.
  13. Gautam, P., et al., Sertoli-Leydig Cell Tumor of Ovary: A Rare Case Report with Heterologous Elements and Focal Marked Anaplasia. Int J Appl Basic Med Res, 2019. 9(1): p. 62-64.
  14. Yang, Z., et al., ASC-J9 ameliorates spinal and bulbar muscular atrophy phenotype via degradation of androgen receptor. Nature medicine, 2007. 13(3): p. 348.
  15. Zhai, J., et al., An increase of estrogen receptor α protein level regulates BDE-209-mediated blood-testis barrier disruption during spermatogenesis in F1 mice. Environmental Science and Pollution Research, 2019. 26(5): p. 4801-4820.
  16. Wei, Y., et al., Integrative Proteomic and Phosphoproteomic Profiling of Testis from Wip1 Phosphatase-Knockout Mice: Insights into Mechanisms of Reduced Fertility*. Molecular & Cellular Proteomics, 2019. 18(2): p. 216-230.
  17. Clulow, J. and R. Jones, Composition of luminal fluid secreted by the seminiferous tubules and after reabsorption by the extratesticular ducts of the Japanese quail, Coturnix coturnix japonica. Biology of Reproduction, 2004. 71(5): p. 1508-1516.
  18. Rato, L., et al., Tubular fluid secretion in the seminiferous epithelium: ion transporters and aquaporins in Sertoli cells. The Journal of membrane biology, 2010. 236(2): p. 215-224.
  19. Theas, M.S., Germ cell apoptosis and survival in testicular inflammation. Andrologia, 2018. 50(11): p. e13083.
  20. Mahajan, V. and M. Goyal, Proximal Preaxial Hallucal Polysyndactyly with Tibial Hemimelia: Diabetic Embryopathy. The Journal of pediatrics, 2018. 203: p. 455-455. e1.
  21. Kim, Y., et al., Immunocontraceptive Effects in Male Rats Vaccinated with Gonadotropin-Releasing Hormone-I and-II Protein Complex. Journal of microbiology and biotechnology, 2019.
  22. ROBINSON‐WHITE, A. and C.A. Stratakis, Protein kinase a signaling. Annals of the New York Academy of Sciences, 2002. 968(1): p. 256-270.
  23. Blume-Jensen, P., et al., Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3′-kinase is essential for male fertility. Nature genetics, 2000. 24(2): p. 157.
  24. Foucault, P., et al., Human Sertoli Cells In Vitro: Lactate, Estradiol‐17β and Transferrin Production. Journal of andrology, 1992. 13(5): p. 361-367.
  25. Campo, S., et al., Hormonal Regulation of Follicle-Stimulating Hormone Glycosylation in Males. Front Endocrinol (Lausanne), 2019. 10: p. 17.
  26. Weber, B., et al., Testosterone, androstenedione and dihydrotestosterone concentrations are elevated in female patients with major depression. Psychoneuroendocrinology, 2000. 25(8): p. 765-771.
  27. Windahl, S.H., et al., Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice. PloS one, 2011. 6(6): p. e21402.
  28. González-Morán, M.G., Changes in the immunohistochemical localization of estrogen receptor alpha and in the stereological parameters of the testes of mature and aged chickens (Gallus domesticus). Biochemical and biophysical research communications, 2019. 510(2): p. 309-314.
  29. Couse, J.F., et al., Characterization of the hypothalamic-pituitary-gonadal axis in estrogen receptor (ER) null mice reveals hypergonadism and endocrine sex reversal in females lacking ERα but not ERβ. Molecular Endocrinology, 2003. 17(6): p. 1039-1053.
  30. Robertson, K.M., et al., Impairment of spermatogenesis in mice lacking a functional aromatase (cyp 19) gene. Proceedings of the National Academy of Sciences, 1999. 96(14): p. 7986-7991.
  31. Dohle, G., M. Smit, and R. Weber, Androgens and male fertility. World journal of urology, 2003. 21(5): p. 341-345.
  32. Luca, G., et al., Sertoli cells for cell transplantation: pre-clinical studies and future perspectives. Andrology, 2018. 6(3): p. 385-395.
  33. Welsh, M., et al., Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. The Journal of clinical investigation, 2008. 118(4): p. 1479-1490.
  34. Sessler-Branden, P., Reproductive Disorders. 2018.
  35. Marín-Ramírez, J.A., et al., Feminización de la tilapia del nilo Oreochromis niloticus (L.) mediante dietilestilbestrol. Crecimiento e índice gonadosomático. Ecosistemas y recursos agropecuarios, 2016. 3(7): p. 51-61.
  36. FRANCHINI, S.E. and C.A.C. De FIGUEIREDO, ENDOCRINE DISRUPTORS AND HORMONES SEXUAL: THE DAMAGE CAUSED BY EXPOSURE TO THESE CONTAMINANTS. Visão Acadêmica, 2015. 16(2).
  37. Alves, M.G., et al., Exposure to 2,4-dichlorophenoxyacetic acid alters glucose metabolism in immature rat Sertoli cells. Reproductive Toxicology, 2013. 38: p. 81-88.
  38. Murray, F.T., et al., The pituitary-testicular axis in the streptozotocin diabetic male rat: evidence for gonadotroph, Sertoli cell and Leydig cell dysfunction. International Journal of Andrology, 1981. 4(1‐6): p. 265-280.
  39. Salem, M., et al., Germ cell differentiation of bone marrow mesenchymal stem cells. Andrologia, 2019: p. e13229.
  40. Zalata, A., et al., Sperm caspase-9 in oligoasthenoteratozoospermic men with and without varicocele. Fertility and Sterility, 2011. 96(5): p. 1097-1099.
  41. Berndt, P., et al., Tight junction proteins at the blood–brain barrier: far more than claudin-5. Cellular and Molecular Life Sciences, 2019.
  42. Guan, X., et al., Effects of spermatogenic cycle on Stem Leydig cell proliferation and differentiation. Molecular and Cellular Endocrinology, 2019. 481: p. 35-43.
  43. Kesselring, T., et al., Testicular morphology and spermatogenesis in harbour porpoises (Phocoena phocoena). Theriogenology, 2019. 126: p. 177-186.
  44. Liu, L., et al., Fluorochloridone perturbs blood-testis barrier/Sertoli cell barrier function through Arp3-mediated F-actin disruption. Toxicology Letters, 2018. 295: p. 277-287.
  45. Merico, V., et al., Sertoli–immature spermatids disengagement during testis regression in the armadillo. 2019. 157(1): p. 27.
  46. Nierwińska, K., et al., The effect of endurance training and testosterone supplementation on the expression of blood spinal cord barrier proteins in rats. PLOS ONE, 2019. 14(2): p. e0211818.
  47. Qu, N., M. Itoh, and K. Sakabe, Effects of Chemotherapy and Radiotherapy on Spermatogenesis: The Role of Testicular Immunology. International Journal of Molecular Sciences, 2019. 20(4): p. 957.
  48. Uchida, A., et al., Formation of organotypic testicular organoids in microwell culture. 2019.
  49. Tao, S., et al., Adverse effects of bisphenol A on Sertoli cell blood-testis barrier in rare minnow Gobiocypris rarus. Ecotoxicology and Environmental Safety, 2019. 171: p. 475-483.
  50. Ahmed, N., et al., Characterization of inter-Sertoli cell tight and gap junctions in the testis of turtle: Protect the developing germ cells from an immune response. Microbial Pathogenesis, 2018. 123: p. 60-67.
  51. Toledano, H., et al., The let-7–Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature, 2012. 485: p. 605.
  52. Chung, N.P.Y. and C.Y. Cheng, Is Cadmium Chloride-Induced Inter-Sertoli Tight Junction Permeability Barrier Disruption a Suitable in Vitro Model to Study the Events of Junction Disassembly during Spermatogenesis in the Rat Testis?*. Endocrinology, 2001. 142(5): p. 1878-1888.
  53. Mital, P., J.M. Dufour, and B.T. Hinton, The Blood-Testis and Blood-Epididymis Barriers Are More than Just Their Tight Junctions1. Biology of Reproduction, 2011. 84(5): p. 851-858.
  54. Itoh, M., et al., Direct Binding of Three Tight Junction-Associated Maguks, Zo-1, Zo-2, and Zo-3, with the Cooh Termini of Claudins. The Journal of Cell Biology, 1999. 147(6): p. 1351.
  55. Goossens, S. and F. van Roy, Cadherin-mediated cell-cell adhesion in the testis. Front Biosci, 2005. 10: p. 398-419.
  56. Griswold, M.D., 50 years of spermatogenesis: Sertoli cells and their interactions with germ cells. Biology of Reproduction, 2018. 99(1): p. 87-100.
  57. Mruk, D.D. and C.Y. Cheng, Desmosomes in the testis. Spermatogenesis, 2011. 1(1): p. 47-51.
  58. Tanaka, M., et al., Effect of mirabegron on tight junction molecules in primary cultured rat Sertoli cells. Andrologia. 0(0): p. e13241.
  59. Domke, L.M., et al., The cell–cell junctions of mammalian testes: I. The adhering junctions of the seminiferous epithelium represent special differentiation structures. Cell and Tissue Research, 2014. 357(3): p. 645-665.
  60. Whittock, N.V. and C. Bower, Genetic Evidence for a Novel Human Desmosomal Cadherin, Desmoglein 4. Journal of Investigative Dermatology, 2003. 120(4): p. 523-530.
  61. Aumüller, G., C. Schulze, and C. Viebahn, Intermediate filaments in sertoli cells. Microscopy Research and Technique, 1992. 20(1): p. 50-72.
  62. Kopera, I.A., et al., Sertoli-germ cell junctions in the testis: a review of recent data. Philos Trans R Soc Lond B Biol Sci, 2010. 365(1546): p. 1593-605.
  63. Vogl, W., et al., The endoplasmic reticulum, calcium signaling and junction turnover in Sertoli cells. 2018. 155(2): p. R93.
  • تاریخ دریافت: 08 اردیبهشت 1398
  • تاریخ بازنگری: 29 اردیبهشت 1398
  • تاریخ پذیرش: 29 اردیبهشت 1398