هوش میکروبی و استفاده از آن در زیست فن آوری

نوع مقاله : مقاله ترویجی

نویسندگان

گروه بیوتکنولوژی، دانشکده شیمی، دانشگاه کاشان، کاشان، ایران

چکیده

زمانی که صحبت از هوش و رفتار هوشمندانه ‌می‌شود اولین تصویری که به ذهن خطور ‌می‌کند، موجودات پیشرفته ای همچون پستانداران و در رتبه اول انسان است. ولی آیا موجودات غیر پیشرفته، همچون میکروارگانیسم‌ها نیز دارای هوش و رفتار هوشمندانه هستند؟ آیا استراتژی‌ها و مکانیسم‌هایی در زمان قرار گیریی در شرایط مختلف دارند؟ و آیا برای حفظ بقای خود برنامه ریزی ‌می‌کنند؟ شایستگی‌های ارتباطی و استفاده از واژه های شیمیایی باکتری‌ها را قادر ‌می‌سازد تا توسعه یابند، سازماندهی شوند و زندگی اجتماعی را با انواع مختلفی از الگوهای رفتاری شکل دهند و  خود را مانند ارگانیسم‌های چند سلولی سازماندهی کنند. آن‌ها به مدت چهار میلیارد سال وجود داشته و اکنون نیز زنده هستند، در طی تکامل سازگاری‌هایی کسب کرده اند. تحقیقات اخیر نشان ‌می‌دهد که توانایی‌ باکتری ها از ویروس‌ها برای ویرایش ژنوم حاصل شده است. در این مقاله در مورد هوش میکروارگانیسم ها، و حضور آن ها در جوامع میکروبی بحث شده و برخی راه‌های ارتباطی بین باکتری‌ها و ویروس‌ها مطرح می گردد ،  همچنین کاربرد روابط اجتماعی میکروارگانیسم ها در زیست فن آوری  بیان ‌می‌شود و راهبردی جدید برای مقابله با باکتری‌های بیماری زا  مبتنی بر همین ویژگی‌های ارتباطی و معمول بین باکتری‌ها ارائه ‌می گردد.

 

کلیدواژه‌ها

1- Matsushita, M. and H. Fujikawa, Diffusion-limited growth in bacterial colony formation. Physica A: Statistical Mechanics and its Applications, 1990. 168(1): p. 498-506.
2- BenJacob, E., Learning from bacteria about natural information processing. Annals of the New York Academy of Sciences, 2009. 1178(1): p. 78-90.
3- Xavier, R.S., N. Omar, and L.N. de Castro. Bacterial colony: Information processing and computational behavior. in 2011 Third World Congress on Nature and Biologically Inspired Computing. 2011. IEEE.
4- Giguère, S., J.F. Prescott, and P.M. Dowling, Antimicrobial therapy in veterinary medicine. 2013: John Wiley & Sons.
5- Habibi, I., E.S. Emamian, and A. Abdi, Quantitative analysis of intracellular communication and signaling errors in signaling networks. BMC systems biology, 2014. 8(1): p. 89.
6- Alberts, B.M.B.o.t.C.N.Y.G.S.
7- Popkin, G., Bacteria Use Brainlike Bursts of Electricity to Communicate. quantamagazine, 2017.
8- Turing, A.M., I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind, 1950. LIX(236): p. 433-460.
9- Neisser, U., et al., Intelligence: Knowns and unknowns. American Psychologist, 1996. 51(2): p. 77-101.
10- Thorndike, E.L., Animal intelligence: An experimental study of the associate processes in animals. American Psychologist, 1998. 10(53): p. 1125-1127.
11- Trewavas, A., Plant intelligence: Mindless mastery. Nature, 2002. 415: p. 841.
12- Brooks, R.A., Intelligence without representation. Artificial Intelligence, 1991. 47(1): p. 139-159.
13- Bruggeman Frank, J., et al., Macromolecular Intelligence in Microorganisms, in Biological Chemistry. 2000. p. 965.
14- Hellingwerf, K.J., et al., Signal transduction in bacteria: phospho-neural network(s) in Escherichia coli? FEMS Microbiology Reviews, 1995. 16(4): p. 309-321.
15- Hoffer, S.M., et al., Autoamplification of a Two-Component Regulatory System Results in “Learning” Behavior. Journal of Bacteriology, 2001. 183(16): p. 4914-4917.
16- Jacob, E.B., et al., Bacterial linguistic communication and social intelligence. Trends in Microbiology, 2004. 12(8): p. 366-372.
17- Nakagaki, T., H. Yamada, and T. Ueda, Interaction between cell shape and contraction pattern in the Physarum plasmodium. Biophysical Chemistry, 2000. 84(3): p. 195-204.
18- Westerhoff, H.V., et al., Macromolecular networks and intelligence in microorganisms. Frontiers in Microbiology, 2014. 5(379).
19- مهر, م. مژگان, پدیده Quorum Sensing در باکتری‌ها. مجله دانشکده پیراپزشکی علوم پزشکی ارتش-بهار 86, 2012.
20- Dunny, G.M., Winans, Stephen Carlyle., Cell-cell signaling in bacteria, ed. G.M. Dunny and S.C. Winans. 1999, Washington, D.C.: ASM Press.
22- Bassler, B.L. and R. Losick, Bacterially speaking. Cell, 2006. (2)125: p. 237-246.
23- Ben-Jacob, E. and H. Levine, Self-engineering capabilities of bacteria. Journal of the Royal Society Interface, 2006. 3(6): p. 197-214.
24- Hughes, D.T. and V. Sperandio, Inter-kingdom signalling: communication between bacteria and their hosts. Nature reviews. Microbiology, 2008. 6(2): p. 111-120.
25- Witzany, G., Bio-communication of bacteria and their evolutionary roots in natural genome editing competences of viruses. Open Evol. J, 2008. 2: p. R44-R54.
26- Großkopf, T., et al., Metabolic modelling in a dynamic evolutionary framework predicts adaptive diversification of bacteria in a long-term evolution experiment. BMC Evolutionary Biology, 2016. 16(1): p. 163.
27- Cavaliere, M., et al., Cooperation in microbial communities and their biotechnological applications. Environmental microbiology, 2017. 19(8): p. 2949-2963.
28- Walker, T.S., et al., Root exudation and rhizosphere biology. Plant physiology, 2003. 132(1): p. 44-51.
29- Bais, H.P., et al., How plants communicate using the underground information superhighway. Trends in plant science, 2004. 9(1): p. 26-32.
30- Imaizumi-Anraku, H., et al., Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature, 2005. 433(7025): p. 527.
31- Teplitski, M., J.B. Robinson, and W.D. Bauer, Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Molecular Plant-Microbe Interactions, 2000. 13(6): p. 637-648
32- Bauer, W.D. and J.B. Robinson, Disruption of bacterial quorum sensing by other organisms. Current opinion in biotechnology, 2002. 13(3): p. 234-237.
33- Greenberg, E.P., Bacterial communication: tiny teamwork. Nature, 2003. 424(6945): p. 134.
34- Blech, J., Leben auf dem Menschen. Die Geschichte unserer Besiedler. Hamburg: Rowohlt Taschenbuch Verlag, 2000.
35- Witzany, G., Natural genome-editing competences of viruses. Acta Biotheoretica, 2006. 54(4): p. 235-253.
36- Forterre, P., The origin of DNA genomes and DNA replication proteins. Current opinion in microbiology, 2002. 5(5): p. 525-532.
37- Forterre, P., The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. Biochimie, 2005. 87(9-10): p. 793-803.
38- Forterre, P., The origin of viruses and their possible roles in major evolutionary transitions. Virus research, 2006. 117(1): p. 5-16.
39- Villarreal, L.P., Can viruses make us human? Proceedings of the American Philosophical Society, 2004. 148(3): p. 296-323.
40- Tettelin, H., et al., Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(39): p.13950-13955.
41- Ryan, F.P., Genomic creativity and natural selection: a modern synthesis. Biological journal of the Linnean Society, 2006. 88(4): p. 655-672.
42- Villarreal, L.P., Viruses and the evolution of life. 2005: ASM press.
43- Bell, P.J.L., Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? Journal of Molecular Evolution, 2001. 53(3): p. 251-256.
44- Takemura, M., Poxviruses and the origin of the eukaryotic nucleus. Journal of Molecular Evolution, 2001. 52(5): p. 419-425.
45- Bell, P.J.L., Sex and the eukaryotic cell cycle is consistent with a viral ancestry for the eukaryotic nucleus. Journal of theoretical biology, 2006. 243(1): p. 54-63.
46- Oppenheim, A.B., et al., Switches in Bacteriophage Lambda Development. Annual Review of Genetics, 2005. 39(1): p. 409-429.
47- Davidson, A.R., Phages make a group decision. Nature, 2017. 541: p. 466.
48- Erez, Z., et al., Communication between viruses guides lysis-lysogeny decisions. Nature, 2017. 541(7638): p. 488-493.
49- Kourilsky, P., Lysogenization by bacteriophage lambda. Molecular and General Genetics MGG, 1973. 122(2): p. 183-195.
50- Passino, K.M., Biomimicry of bacterial foraging for distributed optimization and control. IEEE control systems magazine, 2002. 22(3): p. 52-67.
51- Passino, K.M., Bacterial foraging optimization. International Journal of Swarm Intelligence Research (IJSIR), 2010. 1(1): p. 1-16.
52- Cunha, D.S.d., et al., Bacterial Colony Algorithms for Association Rule Mining in Static and Stream Data. Mathematical Problems in Engineering, 2018. 2018.
53- Das, S., et al., Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications, in Foundations of Computational Intelligence Volume 3. 2009, Springer. p. 23-55.
54- Xing, B. and W.-J. Gao, Bacteria inspired algorithms, in Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms. 2014, Springer. p. 21-38.
55- Biswas, A., et al., A synergy of differential evolution and bacterial foraging optimization for global optimization. Neural Network World, 2007. 17(6): p. 607.
56- Mezura-Montes, E. and B. Hernández-Ocaña, Modified bacterial foraging optimization for engineering design, in Intelligent engineering systems through artificial neural networks. 2009, ASME Press.
57- Abd-Elazim, S. and E. Ali, Bacteria foraging optimization algorithm based SVC damping controller design for power system stability enhancement. International Journal of Electrical Power & Energy Systems, 2012. 43(1): p. 933-940.
58- Kumar, K.S. and T. Jayabarathi, Power system reconfiguration and loss minimization for an distribution systems using bacterial foraging optimization algorithm. International Journal of Electrical Power & Energy Systems, 2012. 36(1): p. 13-17.
59- Abd-Elazim, S. and E. Ali, A hybrid particle swarm optimization and bacterial foraging for optimal power system stabilizers design. International Journal of Electrical Power & Energy Systems, 2013. 46: p. 334-341.
60- Abd-Elazim, S. and E. Ali, Synergy of particle swarm optimization and bacterial foraging for TCSC damping controller design. Int J WSEAS Trans Power Syst, 2013. 8(2): p. 74-84.
61- Chen, H., Y. Zhu, and K. Hu, Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning. Applied Soft Computing, 2010. 10(2): p. 539-547.
62- Majhi, R., et al., Efficient prediction of stock market indices using adaptive bacterial foraging optimization (ABFO) and BFO based techniques. Expert Systems with Applications, 2009. 36(6): p. 10097-10104.
63- Olesen, J.R., J. Cordero, and Y. Zeng. Auto-clustering using particle swarm optimization and bacterial foraging. in International Workshop on Agents and Data Mining Interaction. 2009. Springer.
64- Wan, M., et al., Data clustering using bacterial foraging optimization. Journal of Intelligent Information Systems, 2012. 38(2): p. 321-341.
65- Lindemann, S.R., et al., Engineering microbial consortia for controllable outputs. The ISME journal, 2016. 10(9): p. 2077.
66- Zomorrodi, A.R. and D. Segre, Synthetic ecology of microbes: mathematical models and applications. Journal of molecular biology, 2016. 428(5): p. 837-861.
67- West, S.A., et al., Social evolution theory for microorganisms. Nature reviews microbiology, 2006. 4(8): p. 597.
68- Willsey, G.G. and M.J. Wargo, Extracellular lipase and protease production from a model drinking water bacterial community is functionally robust to absence of individual members. PloS one, 2015. 10(11): p. e0143617.
69- Chen, S., et al., Biochemical characterization of the cutinases from Thermobifida fusca. Journal of Molecular Catalysis B: Enzymatic, 2010. 63(3-4): p. 121-127.
70- Yoshida, S., et al., A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 2016. 351(6278): p. 1196-1199.
71- Wierckx, N., et al., Plastic waste as a novel substrate for industrial biotechnology. Microbial biotechnology, 2015. 8(6): p. 900.
72- Xavier, J.B., Social interaction in synthetic and natural microbial communities. Molecular systems biology, 2011. (1) 7: p. 483.
73- Liu, J., et al., Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature, 2015. 523(7562): p. 550.
74- Kim, W., S.B. Levy, and K.R. Foster, Rapid radiation in bacteria leads to a division of labour. Nature communications, 2016. 7: p. 10508.
75- Wolfaardt, G.M., et al., The role of interactions, sessile growth, and nutrient amendments on the degradative efficiency of a microbial consortium. Canadian Journal of Microbiology, 1994. 40(5): p. 331-340.
76- Franklin, F., et al., Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. Proceedings of the National Academy of Sciences, 1981. 78(12): p. 7458-746.
77- Nikel, P.I., et al., The private life of environmental bacteria: pollutant biodegradation at the single cell level. Environmental microbiology, 2014. 16(3): p. 628-642.
78- Zhou, K., et al., Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nature biotechnology, 2015. 33(4): p. 377.
79- Karpinets, T.V., et al., Phenotype fingerprinting suggests the involvement of single-genotype consortia in degradation of aromatic compounds by Rhodopseudomonas palustris. PLoS One, 2009. 4(2): p. e4615.
80- Minty, J.J., et al., Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proceedings of the National Academy of Sciences, 2013. 110(36): p. 14592-14597.
81- McGenity, T.J., et al., Marine crude-oil biodegradation: a central role for interspecies interactions. Aquatic Biosystems, 2012. 8(1): p. 10.
82- Gallego, J.L.R., et al., Biodegradation of Oil Tank Bottom Sludge using Microbial Consortia. Biodegradation, 2007. 18(3): p. 269-281.
83- Gore, J., H. Youk, and A. van Oudenaarden, Snowdrift game dynamics and facultative cheating in yeast. Nature, 2009. 459: p. 253.
84- Sanchez, A. and J. Gore, feedback between population and evolutionary dynamics determines the fate of social microbial populations. PLoS biology, 2013. 11(4): p. e1001547.
85- Liu, J., et al., Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature, 2015. 523: p. 550.
86- Fong, J., et al., Combination Therapy Strategy of Quorum Quenching Enzyme and Quorum Sensing Inhibitor in Suppressing Multiple Quorum Sensing Pathways of P. aeruginosa. Scientific Reports, 2018. 8(1): p. 1155.
87- Withers, H., S. Swift, and P. Williams, Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Current opinion in microbiology, 2001. 4(2): p. 186-193.
88- Williams, P., et al., Look who's talking: communication and quorum sensing in the bacterial world. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007. 362(1483): p. 1119-1134.
89- Pearson, J.P., et al., Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infection and immunity, 2000. 68(7): p. 4331-4334.
90- Hentzer, M., et al., Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology, 2002. 148(1): p. 87-102.
91- Hentzer, M., et al., Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. The EMBO journal, 2003. 22(15): p. 3803-3815.
92- Yeon, K.-M., et al., Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environmental science & technology, 2008. (2) 43: p. 380-385.
93- Grandclément, C., et al., Quorum quenching: role in nature and applied developments. FEMS microbiology reviews, 2015. 40(1): p. 86-116.
  • تاریخ دریافت: 01 خرداد 1398
  • تاریخ بازنگری: 04 مرداد 1398
  • تاریخ پذیرش: 04 مرداد 1398