مروری بر ابزار کریسپر برای ویرایش ژنوم

نوع مقاله : مقاله ترویجی

نویسندگان

1 تهران، دانشگاه شهید بهشتی، دانشکده علوم و فناوری زیستی، گروه زیست شناسی گیاهی

2 تهران، دانشگاه شهید بهشتی، دانشکده علوم و فناوری زیستی، گروه زیست شناسی سلولی-مولکولی

چکیده

کریسپر چندین دهه پیش از آنکه به عنوان سیستم ایمنی باکتریایی و پس از آن به عنوان ابزاری قدرتمند با قابلیت برنامه‌ریزی مجدد برای هدف‌گیری ژن معرفی شود، به سادگی به عنوان یک واحد تکراری در DNA پروکاریوتی شناخته شده بود. فناوری ویرایش ژن کریسپر دارای پروتئین‌های همراه Cas است که فعالیت اندونوکلئازی دارند و می‌توانند DNA مورد نظر را طبق دستوری که gRNA به آن­ها می‌دهد برش بزنند. در ویرایش ژن از روش‌های HDR و NHEJ و ویرایش باز نیز استفاده می‌شود که در بین آن­ها، ویرایشگرهای باز امروزه مورد توجه بیشتری قرار گرفته‌اند؛ زیرا می‌توانند اپی­ژنوم را بدون شکستن DNA ویرایش کنند. کریسپر را به طور کلی به کلاس­های I و II تقسیم می‌کنند. لازم به ذکر است که کریسپر هنوز چالش‌های فنی زیادی دارد و ممکن است مدت زمان زیادی طول بکشد تا یک ابزار کریسپر بی‌نقص تولید شود. در این مقاله به توضیح محدودیت‌های ادغام ژن، عملکرد کلی سیستم کریسپر و هم‌چنین موارد استفاده از آن پرداخته شده است.

کلیدواژه‌ها

  1. Adli, M., The CRISPR tool kit for genome editing and beyond. Nature communications, 2018. 9(1): p. 1-13.
  2. Rothstein, R.J., [12] One-step gene disruption in yeast. Methods in enzymology, 1983. 101: p. 202-211.
  3. Capecchi, M.R., Altering the genome by homologous recombination. Science, 1989. 244(4910): p. 1288-1292.
  4. Lin, F., K. Sperle, and N. Sternberg, Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences. Proceedings of the National Academy of Sciences, 1985. 82(5): p. 1391-1395.
  5. Rudin, N., E. Sugarman, and J.E. Haber, Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics, 1989. 122(3): p. 519-534.
  6. Rouet, P., F. Smih, and M. Jasin, Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Molecular and cellular biology, 1994. 14(12): p. 8096-8106.
  7. Jeggo, P., 5 DNA Breakage and Repair, in Advances in genetics. 1998, Elsevier. p. 185-218.
  8. Klug, A. and D. Rhodes. Zinc fingers: a novel protein fold for nucleic acid recognition. in Cold Spring Harbor symposia on quantitative biology. 1987. Cold Spring Harbor Laboratory Press.
  9. Kim, Y.-G., J. Cha, and S. Chandrasegaran, Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences, 1996. 93(3): p. 1156-1160.

10.Bibikova, M., et al., Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Molecular and cellular biology, 2001. 21(1): p. 289-297.

11.Porteus, M.H. and D. Baltimore, Chimeric nucleases stimulate gene targeting in human cells. Science, 2003. 300(5620): p. 763-763.

12.Boch, J., et al., Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009. 326(5959): p. 1509-1512.

13.Moscou, M.J. and A.J. Bogdanove, A simple cipher governs DNA recognition by TAL effectors. Science, 2009. 326(5959): p. 1501-1501.

14.Gaj, T., C.A. Gersbach, and C.F. Barbas III, ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in biotechnology, 2013. 31(7): p. 397-405.

15.Jansen, R., et al., Identification of genes that are associated with DNA repeats in prokaryotes. Molecular microbiology, 2002. 43(6): p. 1565-1575.

16.Ishino, Y., et al., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of bacteriology, 1987. 169(12): p. 5429-5433.

17.Mojica, F.J., et al., Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular microbiology, 2000. 36(1): p. 244-246.

18.Maeder, M.L., et al., CRISPR RNA–guided activation of endogenous human genes. Nature methods, 2013. 10(10): p. 977-979.

19.Barrangou, R., et al., CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007. 315(5819): p. 1709-1712.

20.Marraffini, L.A. and E.J. Sontheimer, Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature, 2010. 463(7280): p. 568-571.

21.Brouns, S.J., et al., Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008. 321(5891): p. 960-964.

22.Marraffini, L.A. and E.J. Sontheimer, CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. science, 2008. 322(5909): p. 1843-1845.

23.Haft, D.H., et al., A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS computational biology, 2005. 1(6).

24.Makarova, K.S., et al., Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 2011. 9(6): p. 467-477.

25.Khan, S., et al., CRISPR/Cas9: the Jedi against the dark empire of diseases. Journal of biomedical science, 2018. 25(1): p. 29.

26.Abudayyeh, O.O., et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 2016. 353(6299): p. aaf5573.

27.Deveau, H., et al., Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of bacteriology, 2008. 190(4): p. 1390-1400.

28.Zetsche, B., et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015. 163(3): p. 759-771.

29.Garneau, J.E., et al., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010. 468(7320): p. 67-71.

30.Deltcheva, E., et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011. 471(7340): p. 602-607.

31.Sapranauskas, R., et al., The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic acids research, 2011. 39(21): p. 9275-9282.

32.Jinek, M., et al., A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. science, 2012. 337(6096): p. 816-821.

33.Gasiunas, G., et al., Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, 2012. 109(39): p. E2579-E2586.

34.Wright, W.D., S.S. Shah, and W.-D. Heyer, Homologous recombination and the repair of DNA double-strand breaks. Journal of Biological Chemistry, 2018. 293(27): p. 10524-10535.

35.McVey, M. and S.E. Lee, MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends in Genetics, 2008. 24(11): p. 529-538.

36.Zhao, X., et al., Cell cycle-dependent control of homologous recombination. Acta biochimica et biophysica Sinica, 2017. 49(8): p. 655-668.

37.Eid, A., S. Alshareef, and M.M. Mahfouz, CRISPR base editors: genome editing without double-stranded breaks. Biochemical Journal, 2018. 475(11): p. 1955-1964.

38.Komor, A.C., et al., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016. 533(7603): p. 420-424.

39.Gaudelli, N.M., et al., Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature, 2017. 551(7681): p. 464-471.

40.Hou, Z., et al., Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proceedings of the National Academy of Sciences, 2013. 110(39): p. 15644-15649.

41.Ran, F.A., et al., In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015. 520(7546): p. 186-191.

42.Friedland, A.E., et al., Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome biology, 2015. 16(1): p. 257.

43.Kim, E., et al., In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nature communications, 2017. 8: p. 14500.

44.Hirano, H., et al., Structure and engineering of Francisella novicida Cas9. Cell, 2016. 164(5): p. 950-961.

45.Mojica, F.J., J. García-Martínez, and E. Soria, Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of molecular evolution, 2005. 60(2): p. 174-182.

46.Yamano, T., et al., Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell, 2016. 165(4): p. 949-962.

47.Zuo, E., et al., Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science, 2019. 364(6437): p. 289-292.

48.Jin, S., et al., Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science, 2019. 364(6437): p. 292-295.

49.Ran, F.A., et al., Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013. 154(6): p. 1380-1389.

50.Guilinger, J.P., D.B. Thompson, and D.R. Liu, Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature biotechnology, 2014. 32(6): p. 577.

51.Tsai, S.Q., et al., Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature biotechnology, 2014. 32(6): p. 569-576.

52.Nishimasu, H., et al., Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014. 156(5): p. 935-949.

53.Lei, Y., et al., Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nature communications, 2017. 8(1): p. 1-10.

54.Moon, S.B., J.-H. Ko, and Y.-S. Kim, Recent advances in the CRISPR genome editing tool set. Experimental & molecular medicine, 2019. 51(11): p. 1-11.

55.Qi, L.S., et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013. 152(5): p. 1173-1183.

56.Gilbert, L.A., et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013. 154(2): p. 442-451.

57.Urrutia, R., KRAB-containing zinc-finger repressor proteins. Genome biology, 2003. 4(10): p. 231.

58.Konermann, S., et al., Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 2015. 517(7536): p. 583-588.

59.Friedman, J.R., et al., KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes & development, 1996. 10(16): p. 2067-2078.

60.Groner, A.C., et al., KRAB–zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS genetics, 2010. 6(3).

61.Wysocka, J. and W. Herr, The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends in biochemical sciences, 2003. 28(6): p. 294-304.

62.Cheng, A.W., et al., Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell research, 2013. 23(10): p. 1163-1171.

63.Chavez, A., et al., Highly efficient Cas9-mediated transcriptional programming. Nature methods, 2015. 12(4): p. 326-328.

64.Hardwick, J.M., et al., The Epstein-Barr virus R transactivator (Rta) contains a complex, potent activation domain with properties different from those of VP16. Journal of virology, 1992. 66(9): p. 5500-5508.

65.Sugiyama, T. and D. Nakada, Translational control of bacteriophage MS2 RNA cistrons by MS2 coat protein: polyacrylamide gel electrophoretic analysis of proteins synthesized in vitro. Journal of molecular biology, 1968. 31(3): p. 431-440.

66.Peabody, D.S., The RNA binding site of bacteriophage MS2 coat protein. The EMBO journal, 1993. 12(2): p. 595-600.

67.Zalatan, J.G., et al., Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 2015. 160(1-2): p. 339-350.

68.Tanenbaum, M.E., et al., A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 2014. 159(3): p. 635-646.

69.Chavez, A., et al., Comparison of Cas9 activators in multiple species. Nature methods, 2016. 13(7): p. 563-567.

70.Qu, H. and X. Fang, A brief review on the Human Encyclopedia of DNA Elements (ENCODE) project. Genomics, proteomics & bioinformatics, 2013. 11(3): p. 135-141.

71.Bernstein, B.E., et al., The NIH roadmap epigenomics mapping consortium. Nature biotechnology, 2010. 28(10): p. 1045-1048.

72.Razin, A. and A.D. Riggs, DNA methylation and gene function. Science, 1980. 210(4470): p. 604-610.

73.Okano, M., et al., DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999. 99(3): p. 247-257.

74.Kaminskas, E., et al., FDA Commentary. The oncologist, 2005. 10: p. 176-182.

75.Galonska, C., et al., Genome-wide tracking of dCas9-methyltransferase footprints. Nature communications, 2018. 9(1): p. 1-9.

76.Polstein, L.R. and C.A. Gersbach, A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nature chemical biology, 2015. 11(3): p. 198-200.

77.Jensen, E.D., et al., Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies. Microbial cell factories, 2017. 16(1): p. 46.

78.Nakamura, M., et al., Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells. Nature communications, 2019. 10(1): p. 1-11.

79.Hanewich-Hollatz, M.H., et al., Conditional guide RNAs: Programmable conditional regulation of CRISPR/cas function in bacterial and mammalian cells via dynamic RNA nanotechnology. ACS central science, 2019. 5(7): p. 1241-1249.

80.Braun, S.M., et al., Rapid and reversible epigenome editing by endogenous chromatin regulators. Nature communications, 2017. 8(1): p. 1-8.

81.Klann, T.S., et al., CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nature biotechnology, 2017. 35(6): p. 561.

82.Chakraborty, S., et al., A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem cell reports, 2014. 3(6): p. 940-947.

83.Balboa, D., et al., Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem cell reports, 2015. 5(3): p. 448-459.

84.Bialek, J.K., et al., Targeted HIV-1 latency reversal using CRISPR/Cas9-derived transcriptional activator systems. PloS one, 2016. 11(6).

85.Lino, C.A., et al., Delivering CRISPR: a review of the challenges and approaches. Drug delivery, 2018. 25(1): p. 1234-1257.

86.Ibraheim, R., et al., All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo. Genome biology, 2018. 19(1): p. 137.

87.Li, A., et al., A self-deleting AAV-CRISPR system for in vivo genome editing. Molecular Therapy-Methods & Clinical Development, 2019. 12: p. 111-122.

88.Karvelis, T., et al., PAM recognition by miniature CRISPR-Cas14 triggers programmable double-stranded DNA cleavage. bioRxiv, 2019: p. 654897.

89.Charlesworth, C.T., et al., Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nature medicine, 2019. 25(2): p. 249-254.

90.Kim, S., et al., CRISPR RNAs trigger innate immune responses in human cells. Genome research, 2018. 28(3): p. 367-373.

  • تاریخ دریافت: 27 مرداد 1399
  • تاریخ بازنگری: 07 فروردین 1401
  • تاریخ پذیرش: 07 تیر 1400