مروری بر استفاده از جلبک‌ها به عنوان سوخت زیستی و بهینه‌سازی آن

نوع مقاله : مقاله ترویجی

نویسندگان

1 تهران، دانشگاه شهید بهشتی، دانشکده علوم و فناوری زیستی، گروه زیست شناسی گیاهی

2 تهران، دانشگاه شهید بهشتی، دانشکده علوم و فناوری زیستی، گروه زیست شناسی سلولی-مولکولی

چکیده

ﻣﺤﺪودﺑﻮدن ﻣﻨﺎﺑﻊ ﺳﻮﺧﺖ ﻓﺴﻴﻠﻲ در ﻛﻨﺎر آﻟﻮدگی‌های زﻳﺴﺖﻣﺤﻴﻄﻲ ﻧﺎﺷﻲ از اﺣﺘﺮاق آنﻫﺎ ﺟﺴﺘﺠﻮی ﻣﻨﺎﺑﻊ ﺟﺎﻳﮕﺰﻳﻦ ﺗﺠﺪﻳﺪﭘﺬﻳﺮ و ﭘﺎک را ﺿﺮوری میﺳﺎزد. ﺑﻴﺸﺘﺮ ﺗﻮﺟﻪ در ﺗﻮﻟﻴﺪ ﺳﻮﺧﺖ زﻳﺴﺘﻲ ﻣﻌﻄﻮف ﺑﻪ اﺳﺘﻔﺎده از بیومس ﮔﻴﺎﻫﻲ، ﺿﺎﻳﻌﺎت ﻛﺸﺎورزی، ﭘﺴﻤﺎﻧﺪﻫﺎی ﺟﺎﻣﺪ و ﻟﺠﻦ ﺗﺼﻔﻴﻪﻫﺎی دﻓﻌﻲ تصفیهﺧﺎﻧﻪﻫﺎی ﻓﺎﺿﻼب ﺑﻮده اﺳﺖ. امروزه منابع تجدیدپذیر جهت جایگزینی سوخت­های فسیلی مثل سوخت­های زیستی-گیاهی وجود دارد؛ با اﻳﻦ ﺣﺎل در دﻫﻪ اﺧﻴﺮ ﻛﺸﺖ میکروﺟﻠﺒﻚها به عنوان گزینه­ای دیگر ﺑﺮای ﺗﻮﻟﻴﺪ ﺑﻴﻮﻣﺲ ﻣﻄﺮح ﺷﺪه اﺳﺖ. بهره‌وری از زیست­ توده­های جلبکی از نظر مصرف آب و مساحت زیر کشت به صرفه­تر از محصولات زراعی گیاهی بوده و باعث کاهش هزینه و کاهش انتشار گازهای گلخانه­ای از طریق جایگزینی با سوخت های فسیلی می‌گردد. بسیاری از گونه­ های میکروجلبک‌ها با توجه به توانایی بالا در مصرف کربن آلی و نیتروژن غیرآلی و فسفر، قادر به رشد در محیط‌های آبی مختلف از جمله فاضلاب­های شهری و صنعتی و کشاورزی و فاضلاب‌های حاوی فضولات حیوانی که در آن‌ها مقادیر زیادی کربن آلی و غیرآلی و نیتروژن و فسفر و دیگر عناصر وجود دارد، می‌باشند و به عنوان یک تصفیه‌کننده‌ی زیستی عمل می‌کنند. با بررسی و مطالعات گسترده و ابداع تکنیک‌های جدید می‌توان به تولید مقرون­ به­ صرفه سوخت‌های زیستی-جلبکی دست یافت و همچنین از تولید سوخت‌های زیستی-گیاهی به دلیل مصرف بالای آب شیرین و زمین‌های کشاورزی جلوگیری کرد. در این مقاله مروری، مطالعات صورت‌گرفته در زمینه سوخت‌های زیستی، استفاده از جلبک‌ها به عنوان سوخت زیستی و روش‌های بهینه‌سازی تولید آن به صورت جامع ارائه شده است.

کلیدواژه‌ها

عنوان مقاله [English]

An Overview on the Usage of Algae as a Biofuel and their Optimization

نویسندگان [English]

  • Niloofar Khayati 1
  • Maryam Abedini 1
  • Seyed Mohsen Dehnavi 2

چکیده [English]

Limitation of fossil fuel resources along with environmental pollution caused by combustion of them is necessary to search for renewable and clean alternatives. Most of the attention in biofuel production has been focused on the use of biomass, agricultural wastes, solid wastes, and sewage disposal sludge treatment. Today, there are renewable sources to replace fossil fuels such as plant biofuels. However, in the last decade microalgae cultivation has been introduced as another alternative to biomass production. The use of algal biomass in terms of water use and area under cultivation is more effective than crops and reduces cost and reduces greenhouse gas emissions by replacing fossil fuels. Many species of microalgae, due to their ability to use abundant organic carbon and inorganic nitrogen and phosphorus, can grow various aquatic ecosystems such as municipal and industrial wastewater and sewage and waste streams containing large amounts of organic and inorganic carbon, N, P, and other elements. With extensive studies and development of new techniques, it is possible to achieve cost-effective algal biomass production and also prevent the production of plant biofuels due to the high consumption of freshwater and agricultural lands.

کلیدواژه‌ها [English]

  • Biofuels
  • microalgae
  • plant biomass
  • wastewater treatment
  1.  

    1. Chiappe, C., et al., Development of cost-effective biodiesel from microalgae using protic ionic liquids. Green Chemistry, 2016. 18(18): p. 4982-4989.
    2. Mathimani, T. and A. Pugazhendhi, Utilization of algae for biofuel, bio-products and bio-remediation. Biocatalysis and agricultural biotechnology, 2019. 17: p. 326-330.
    3. Mathimani, T., L. Uma, and D. Prabaharan, Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid–an efficient biodiesel yield and its characterization. Renewable energy, 2015. 81: p. 523-533.
    4. Subsamran, K., et al., Potential use of vetiver grass for cellulolytic enzyme production and bioethanol production. Biocatalysis and agricultural biotechnology, 2019. 17: p. 261-268.
    5. Chi, N.T.L., et al., Evaluating the potential of green alga Chlorella sp. for high biomass and lipid production in biodiesel viewpoint. Biocatalysis and agricultural biotechnology, 2019. 17: p. 184-188.
    6. Gupta, J., M. Agarwal, and A. Dalai, Optimization of biodiesel production from mixture of edible and nonedible vegetable oils. Biocatalysis and Agricultural Biotechnology, 2016. 8: p. 112-120.
    7. Sharma, J., et al., Enhancement of lipid production from algal biomass through various growth parameters. Journal of Molecular Liquids, 2018. 269: p. 712-720.
    8. Enamala, M.K., et al., Production of biofuels from microalgae-A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable and Sustainable Energy Reviews, 2018. 94: p. 4-
    9. Chisti, Y., Biodiesel from microalgae. Biotechnology advances, 2007. 25(3): p. 294-306.
    10. Baldev, E., et al., Unveiling algal cultivation using raceway ponds for biodiesel production and its quality assessment. Renewable Energy, 2018. 123: p. 486-498.
    11. Prabakar, D., et al., Advanced biohydrogen production using pretreated industrial waste: outlook and prospects. Renewable and Sustainable Energy Reviews, 2018. 96: p. 306-324.
    12. Alam, F., S. Mobin, and H. Chowdhury, Third generation biofuel from Algae. Procedia Engineering, 2015. 105: p. 763-768.
    13. de Vries, S.C., et al., Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass and Bioenergy, 2010. 34(5): p. 588-601.
    14. Fei, H., A. Abudureheman, and J.K. Vessey, Improving a “Generation 1.5” biofuel feedstock crop: Colonization and growth enhancement of energy beet (Beta vulgare L. Beta 5833R) by inoculation with Gluconacetobacter spp. Biocatalysis and agricultural biotechnology, 2017. 10: p. 247-255.
    15. Sims, R.E., et al., An overview of second generation biofuel technologies. Bioresource technology, 2010. 101(6): p. 1570-1580.
    16. Maity, J.P., et al., Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives–A mini review. Energy, 2014. 78: p. 104-113.
    17. Sheehan, J., et al., Look back at the US department of energy's aquatic species program: biodiesel from algae; close-out report. 1998, National Renewable Energy Lab., Golden, CO.(US).
    18. Mata, T.M., A.A. Martins, and N.S. Caetano, Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, 2010. 14(1): p. 217-232.
    19. Mathimani, T., et al., Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: process evaluation and knowledge gaps. Journal of cleaner production, 2019. 208: p. 1053-1064.
    20. Shimako, A.H., et al., Environmental assessment of bioenergy production from microalgae based systems. Journal of Cleaner Production, 2016. 139: p. 51-60.
    21. Hemaiswarya, S. and I. Rathinam Raja, S. Carvalho, R. Ravikumar, Vasudeo Zambare & Debmalya Barh. Appl Microbiol Biotechnol, 2012. 96: p. 1125-1135.
    22. Saravanan, A.P., et al., Biofuel policy in India: a review of policy barriers in sustainable marketing of biofuel. Journal of cleaner production, 2018. 193: p. 734-747.
    23. Mobin, S. and F. Alam, Some promising microalgal species for commercial applications: A review. Energy Procedia, 2017. 110: p. 510-517.
    24. Pulz, O. and W. Gross, Valuable products from biotechnology of microalgae. Applied microbiology and biotechnology, 2004. 65(6): p. 635-648.
    25. Winwood, R.J., Recent developments in the commercial production of DHA and EPA rich oils from micro-algae. Ocl, 2013. 20(6): p. D604.
    26. Bajhaiya, A., et al., Algal biodiesel The next generation biofuel for India. Asian J. Exp. Biol. Sci, 2010. 4: p. 728-739.
    27. Pittman, J., Dean. AP, Osundeko. O.(2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology. 102(1): p. 17-25.
    28. Kern, J.D., et al., Multiobjective Optimal Siting of Algal Biofuel Production with Municipal Wastewater Treatment in Watersheds with Nutrient Trading Markets. Journal of Water Resources Planning and Management, 2019. 145(2): p. 04018092.

    29.Lundquist, T.J., et al., A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, 2010: p. 1.

    1. Huntsinger, L.F., N.M. Rouphail, and P. Bloomfield, Trip generation models using cumulative logistic regression. Journal of urban planning and development, 2013. 139(3): p. 176-184.
    2. Gupta, S.K., et al., Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. Journal of Cleaner Production, 2016. 115: p. 255-264.
    3. Chen, G., L. Zhao, and Y. Qi, Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Applied Energy, 2015. 137: p. 282-291.
    4. de la Noüe, J., G. Laliberté, and D. Proulx, Algae and waste water. Journal of applied phycology, 1992. 4(3): p. 247-254.
    5. Wang, B., et al., CO 2 bio-mitigation using microalgae. Applied microbiology and biotechnology, 2008. 79(5): p. 707-718.
    6. Iwasaki, I., et al., Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a ‘high-CO2’tolerant green alga, Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris. Journal of Photochemistry and Photobiology B: Biology, 1998. 44(3): p. 184-190.
    7. Sydney, E.B., et al., Potential carbon dioxide fixation by industrially important microalgae. Bioresource technology, 2010. 101(15): p. 5892-5896.

    37.Miazek, K., et al., Effect of organic solvents on microalgae growth, metabolism and industrial bioproduct extraction: a review. International journal of molecular sciences, 2017. 18(7): p. 1429.

    1. Martinez, F., C. Ascaso, and M. Orus, Morphometric and stereologic analysis of Chlorella vulgaris under heterotrophic growth conditions. Annals of botany, 1991. 67(3): p. 239-245.
    2. Endo, H., et al., Growth characteristics and cellular components of Chlorella regularis, heterotrophic fast growing strain. Agricultural and Biological Chemistry, 1974. 38(1): p. 9-18.

    40.Holloway, J.M. and R.A. Dahlgren, Nitrogen in rock: occurrences and biogeochemical implications. Global Biogeochemical Cycles, 2002. 16(4): p. 65-1-65-17.

    1. Graham, L.E. and L.W. Wilcox, Algae/; Linda E. Graham, Lee W. Wilcox. 2000.
    2. Keller, M.D., et al., Media for the culture of oceanic ultraphytoplankton 1, 2. Journal of phycology, 1987. 23(4): p. 633-638.
    3. Junying, Z., R. Junfeng, and Z. Baoning, Factors in mass cultivation of microalgae for biodiesel. Chinese Journal of Catalysis, 2013. 34(1): p. 80-100.
  • تاریخ دریافت: 30 مرداد 1399
  • تاریخ بازنگری: 07 تیر 1400
  • تاریخ پذیرش: 07 تیر 1400