ایمونوپاتوژنز، تشخیص و درمان کووید-19

نویسندگان

1 تهران، دانشگاه علوم پزشکی تهران، بیمارستان شریعتی، مرکز تحقیقات روماتولوژی

2 تهران، دانشگاه علوم پزشکی تهران، مرکز تحقیقات التهاب

چکیده

ویروس SARS-CoV-2 عضوی از خانواده‌ی کروناویروس‌ها است که در اواخر سال ۲۰۱۹ در کشور چین باعث پدید آمدن اپیدمی بیماری تنفسی کووید-19 و در نهایت همه‌گیری جهانی این بیماری شد. ژنگان (genome) این ویروس شباهت ۷۹ درصدی به ویروس  SARS-CoV دارد و برای ورود به سلول، مشابه ویروس SARS-CoV از رسپتور ACE2 استفاده می‌کند. شایع‌ترین علائم این بیماری شامل تب، سرفه و درگیری ریوی است که گاهی با علائم دستگاه گوارش نیز همراه است. کاهش تعداد و عملکرد لنفوسیت‌ها و افزایش شدید فعالیت التهابی لوکوسیت‌ها از عوارض ایمنی شناسی این بیماری است. اگر پاسخ‌های سیستم ایمنی در برابر ویروس کافی و مناسب نباشد بیماری وارد حالت حاد و شدید خود می‌شود. در این حالت فعالیت سلول‌های ایمنی سبب افزایش بیش از حد میزان سایتوکاین‌ها در خون و القای طوفان سایتوکاینی شده و سبب آسیب‌های سیستمی قلبی، ریوی و کلیوی و در نهایت مرگ می‌شود. همچنین آسیب ریوی سبب فیبروزی شدن بافت ریه، سخت شدن تنفس،  کاهش سطح اکسیژن خون شریانی می‌شود. تا کنون هیچ داروی اختصاصی برای درمان بیماران کووید-19 شناسایی نشده است اما داروها و روش‌هایی که در کنترل و بهبود بیماری SARS مانند کلروکین، هیدروکسی کلروکین و پلاسما تراپی موثر بوده‌اند از جمله مواردی هستند که نیاز به بررسی بیشتری دارند. در این مقاله مروری به بررسی روند ایمونوپاتوژنز بیماری کووید-19 و درمان‌های ممکن اثربخش در بهبود این بیماری می‌پردازیم.

کلیدواژه‌ها

1- Coronavirus latest: WHO describes outbreak as pandemic. Nature, 2020.
2- Chen, N., et al., Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020. 395(10223): p. 507-513.
3- Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) Available from: https://coronavirus.jhu.edu/map.html.
4- Cherry, J.D., The chronology of the 2002-2003 SARS mini pandemic. Paediatr Respir Rev, 2004. 5(4): p. 262-9.
5- Wang, L.F. and B.T. Eaton, Bats, civets and the emergence of SARS. Curr Top Microbiol Immunol, 2007. 315: p. 325-44.
6- world health organization. 2015; Available from: https://www.who.int/csr/don/23-february-2015-mers-saudi-arabia/en/.
7- Banerjee, A., et al., Bats and Coronaviruses. Viruses, 2019. 11(1).
8- Reusken, C.B., et al., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis, 2013. 13(10): p. 859-66.
9- Liu, J., et al., Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol, 2020. 92(5): p. 491-494.
10- Fehr, A.R. and S. Perlman, Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol, 2015. 1282: p. 1-23.
11- Masters, P.S., The molecular biology of coronaviruses. Adv Virus Res, 2006. 66: p. 193-292.
12- Lu, R., et al., Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020. 395(10224): p. 565-574.
13- Rota, P.A., et al., Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 2003. 300(5624): p. 1394-9.
14- Snijder, E.J., et al., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol, 2003. 331(5): p. 991-1004.
15- Li, X., et al., Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis, 2020.
16- Belouzard, S., et al., Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012. 4(6): p. 1011-33.
17- Li, Q., et al., Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med, 2020.
18- Backer, J.A., D. Klinkenberg, and J. Wallinga, Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020. Euro Surveill, 2020. 25(5).
19- Mehta, P., et al., COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet Journal, 2020.
20- Ramos-Casals, M., et al., Adult haemophagocytic syndrome. Lancet, 2014. 383(9927): p. 1503-1516.
21- Wang, Z., et al., Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China. Clinical Infectious Diseases, 2020.
22- Zhao, Y. and C. Xu, Structure and Function of Angiotensin Converting Enzyme and Its Inhibitors. Chinese Journal of Biotechnology, 2008. 24(2): p. 171-176.
23- Qu, X.X., et al., Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy. J Biol Chem, 2005. 280(33): p. 29588-95.
24- Wang, H., et al., SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res, 2008. 18(2): p. 290-301.
25- Chen, Y., et al., Structure analysis of the receptor binding of 2019-nCoV. Biochemical and Biophysical Research Communications, 2020.
26- Raj, V.S., et al., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013. 495(7440): p. 251-254.
27- Lin, M., et al., Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med Genet, 2003. 4: p. 9.
28- Hajeer, A.H., et al., Association of human leukocyte antigen class II alleles with severe Middle East respiratory syndrome-coronavirus infection. Ann Thorac Med, 2016. 11(3): p. 211-3.
29- Liu, Q., Y.H. Zhou, and Z.Q. Yang, The cytokine storm of severe influenza and development of immunomodulatory therapy. (2042-0226 (Electronic)).
30- Barton, G.M., A calculated response: control of inflammation by the innate immune system. J Clin Invest, 2008. 118(2): p. 413-20.
31- Jensen, S. and A.R. Thomsen, Sensing of RNA Viruses: a Review of Innate Immune Receptors Involved in Recognizing RNA Virus Invasion. Journal of Virology, 2012. 86(6): p. 2900-2910.
32- Li, G., X. Chen, and A. Xu, Profile of Specific Antibodies to the SARS-Associated Coronavirus. New England Journal of Medicine, 2003. 349(5): p. 508-509.
33- Shi, Y., et al., COVID-19 infection: the perspectives on immune responses. Cell Death & Differentiation, 2020.
34- Zheng, H.-Y., et al., Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cellular & Molecular Immunology, 2020.
35- Diao, B., et al., Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). medRxiv, 2020: p. 2020.02.18.20024364.
36- Huang, K.J., et al., An interferon-gamma-related cytokine storm in SARS patients. J Med Virol, 2005. 75(2): p. 185-94.
37- Xu, Z., et al., Pathological findings of COVID-19 associated with acute respiratory distress syndrome. LID - S2213-2600(20)30076-X [pii] LID - 10.1016/S2213-2600(20)30076-X [doi] FAU - Xu, Zhe. (2213-2619 (Electronic)).
38- Nicholls, J.M., et al., Lung pathology of fatal severe acute respiratory syndrome. Lancet, 2003. 361(9371): p. 1773-8.
39- Hindson, J., COVID-19: faecal–oral transmission? Nature Reviews Gastroenterology & Hepatology, 2020.
40- Huang, C., et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020. 395(10223): p. 497-506.
41- Wang, Z., et al., Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China. Clin Infect Dis, 2020.
42- Wu, C., et al., Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med, 2020.
43- Qu, R., et al., Platelet-to-lymphocyte ratio is associated with prognosis in patients with Corona Virus Disease-19. J Med Virol, 2020.
44- Zhou, F., et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020.
45- Kindler, E., V. Thiel, and F. Weber, Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response. Adv Virus Res, 2016. 96: p. 219-243.
46- Kikkert, M., Innate Immune Evasion by Human Respiratory RNA Viruses. J Innate Immun, 2020. 12(1): p. 4-20.
47- Prompetchara, E., C. Ketloy, and T. Palaga, Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol, 2020. 38(1): p. 1-9.
48- Minakshi, R., et al., The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One, 2009. 4(12): p. e8342.
49- Kamitani, W., et al., A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein. Nat Struct Mol Biol, 2009. 16(11): p. 1134-40.
50- Frieman, M. and R. Baric, Mechanisms of severe acute respiratory syndrome pathogenesis and innate immunomodulation. Microbiology and molecular biology reviews : MMBR, 2008. 72(4): p. 672-685.
51- Wang, W., et al., Detection of SARS-CoV-2 in Different Types of Clinical Specimens. Jama, 2020.
52- Loeffelholz, M.J. and Y.W. Tang, Laboratory Diagnosis of Emerging Human Coronavirus Infections - The State of the Art. Emerg Microbes Infect, 2020: p. 1-26.
53- Liu, R., et al., Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin Chim Acta, 2020. 505: p. 172-175.
54- Zhao, J., et al., Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clinical Infectious Diseases, 2020.
55- Haveri, A., et al., Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020. Euro Surveill, 2020. 25(11).
56- Lai, C.C., et al., Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents, 2020: p. 105924.
57- Zu, Z.Y., et al., Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology, 2020: p. 200490.
58- Ai, T., et al., Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology, 2020: p. 200642.
59- Fang, Y., et al., Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology, 2020: p. 200432.
60- Chandwani, A. and J. Shuter, Lopinavir/ritonavir in the treatment of HIV-1 infection: a review. Ther Clin Risk Manag, 2008. 4(5): p. 1023-33.
61- Yao, T.T., et al., A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option. J Med Virol, 2020.
62- Liu, X. and X.-J. Wang, Potential inhibitors for 2019-nCoV coronavirus M protease from clinically approved medicines. bioRxiv, 2020: p. 2020.01.29.924100.
63- Cao, B., et al., A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. New England Journal of Medicine, 2020.
64- Brown, A.J., et al., Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res, 2019. 169: p. 104541.
65- de Wit, E., et al., Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proceedings of the National Academy of Sciences, 2020. 117(12): p. 6771-6776.
66- Agostini, M.L., et al., Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio, 2018. 9(2): p. e00221-18.
68- Savarino, A., et al., New insights into the antiviral effects of chloroquine. Lancet Infect Dis, 2006. 6(2): p. 67-9.
69- Keyaerts, E., et al., In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun, 2004. 323(1): p. 264-8.
70- Savarino, A., et al., Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect Dis, 2003. 3(11): p. 722-7.
71- Vincent, M.J., et al., Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J, 2005. 2: p. 69.
72- Golden, E.B., et al., Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors. Neurosurg Focus, 2015. 38(3): p. E12.
73- Yao, X., et al., In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis, 2020.
74- Gautret, P., et al., Hydroxychloroquine and Azithromycin as a treatment of COVID-19: preliminary results of an open-label non-randomized clinical trial. medRxiv, 2020: p. 2020.03.16.20037135.
75- Randall, R.E. and S. Goodbourn, Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol, 2008. 89(Pt 1): p. 1-47.
76- Hensley, L.E., et al., Interferon-beta 1a and SARS coronavirus replication. Emerg Infect Dis, 2004. 10(2): p. 317-9.
77- Liu, C., et al., Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Central Science, 2020. 6(3): p. 315-331.
79- Tim Smith, P., BCPS; Jennifer Bushek, PharmD; Tony Prosser, PharmD, COVID-19 Drug Therapy – Potential Options. Clinical Drug Information | Clinical Solutions, 2020.
80- Beigelman, A., et al., Azithromycin attenuates airway inflammation in a mouse model of viral bronchiolitis. Respiratory Research, 2010. 11(1): p. 90.
81- Kanoh, S. and B.K. Rubin, Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev, 2010. 23(3): p. 590-615.
82- Gautret, P., et al., Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 2020: p. 105949.
83- Soo, Y.O., et al., Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect, 2004. 10(7): p. 676-8.
دوره 4، شماره 7 - شماره پیاپی 7
اردیبهشت 1399
صفحه 251-259
  • تاریخ دریافت: 22 دی 1398
  • تاریخ بازنگری: 10 تیر 1399
  • تاریخ پذیرش: 10 تیر 1399