اهمیت واکسیناسیون در کنترل اپیدمی حاصل از بیماریهای ویروسی نوپدید

نویسنده

سمنان، دانشگاه سمنان، پردیس علوم و فناوری نوین، دانشکده بیوتکنولوژی

چکیده

در طی دهه گذشته، چندین ویروس جدید با بروز همه­گیری بیماری در بین جمعیت­های انسانی با نگرانی زیاد همراه بوده اند. بیشترین تهدیدات همه­گیری از ویروس­هایی است که از حیوان یا ژن ویروسی انتقال می­یابد. عواملی چون تجارت جهانی، مسافرت به سبب بروز و پایداری بیماریهای عفونی سلامت عمومی را تهدید میکنند .تدوین روشهایی، برای پیش بینی و مدیریت سازمان ملل برای دستیابی به اهداف توسعه پایدار در برابرمقابله با عوامل بیماریزا و کنترل آن بسیار مهم است.  طیف وسیعی از برنامه­ریزی و تعهد بین المللی درتهیه واکسن به تولید آن برای ویروس­های جدید اختصاص دارد. در واقع، واکسنها یک عامل مهم پیشگیری از بروز عفونت­های ویروسی نوپدید محسوب می شوند، زیرا، در بسیاری موارد، گزینه های دیگر پزشکی، محدود یا غیرقابل استفاده هستند، علاوه بر اینکه در برخی موارد همه علائم عفونت­های ویروسی مشخص نیست. برنامه­ریزی کلاسیک برای توسعه واکسن برعلیه ویروس­های نوپدید، استفاده از روش­های مولکولی است. این مقاله به کارگیری فناوری های مقابله با بیماریهای جدید ویروسی و تمرکز بر الگوهای جدیدِ آماده­سازی بهتر در توسعه واکسن را بررسی می کند.

کلیدواژه‌ها

1- Fauci AS, Morens DM. The perpetual challenge of infectious diseases. New England Journal of Medicine. 2012;366(5):454-61.
2- Graham BS, Sullivan NJ. Emerging viral diseases from a vaccinology perspective: preparing for the next pandemic. Nature immunology. 2018;19(1):20.
3- Karesh WB, Dobson A, Lloyd-Smith JO, Lubroth J, Dixon MA, Bennett M, et al. Ecology of zoonoses: natural and unnatural histories. The Lancet. 2012;380(9857):1936-45.
4- Afrough B, Dowall S, Hewson R. Emerging viruses and current strategies for vaccine intervention. Clinical & Experimental Immunology. 2019;196(2):157-66.
5- Resolution GA. Resolution adopted by the General Assembly on 25 September 2015, 70/1. Transforming our world: the 2030 Agenda for Sustainable Development. 2015.
6- Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, Wang C, et al. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science. 2011;333(6049):1593-602.
7- Joyce MG, Wheatley AK, Thomas PV, Chuang G-Y, Soto C, Bailer RT, et al. Vaccine-induced antibodies that neutralize group 1 and group 2 Influenza A viruses. Cell. 2016;166(3):609-23.
8- Villar RF, Patel J, Weaver GC, Kanekiyo M, Wheatley AK, Yassine HM, et al. Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation. Scientific reports. 2016;6:36298.
9- Jardine J, Julien J-P, Menis S, Ota T, Kalyuzhniy O, McGuire A, et al. Rational HIV immunogen design to target specific germline B cell receptors. Science. 2013;340(6133):711-6.
10- Andrews SF, Graham BS, Mascola JR, McDermott AB. Is it possible to develop a “universal” influenza virus vaccine? Immunogenetic considerations underlying B-cell biology in the development of a pan-subtype Influenza A vaccine targeting the hemagglutinin stem. Cold Spring Harbor perspectives in biology. 2018;10(7):a029413.
11- Yassine HM, Boyington JC, McTamney PM, Wei C-J, Kanekiyo M, Kong W-P, et al. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nature medicine. 2015;21(9):1065.
12- Hahn BH, Shaw GM, De KM, Sharp PM. AIDS as a zoonosis: scientific and public health implications. Science. 2000;287(5453):607-14.
13- Plotkin SA. Vaccines for epidemic infections and the role of CEPI. Human vaccines & immunotherapeutics. 2017;13(12): 2755-62.
14- Slaoui M, Mullard A. Moncef Slaoui. Nature reviews Drug discovery. 2015;14(7):452-3.
15- Clarke DK, Hendry RM, Singh V, Rose JK, Seligman SJ, Klug B, et al. Live virus vaccines based on a vesicular stomatitis virus (VSV) backbone: standardized template with key considerations for a risk/benefit assessment. Vaccine. 2016;34(51):6597-609.
16- Liu MA, Wahren B, Hedestam GBK. DNA vaccines: recent developments and future possibilities. Hum Gene Ther. 2006;17(11):1051-61.
17- Rose JK, Clarke DK. Rhabdoviruses as vaccine vectors: from initial development to clinical trials.  Biology and Pathogenesis of Rhabdo-and Filoviruses: World Scientific; 2015. p. 199-230.
18- Roberts A, Buonocore L, Price R, Forman J, Rose JK. Attenuated vesicular stomatitis viruses as vaccine vectors. Journal of virology. 1999;73(5):3723-32.
19- Norrby E. Yellow fever and Max Theiler: the only Nobel Prize for a virus vaccine. J Exp Med. 2007;204(12):2779-84.
20- Monath TP, Barrett AD. Pathogenesis and pathophysiology of yellow fever. Adv Virus Res. 2003;60:343-95.
21- Rice CM, Grakoui A, Galler R, Chambers TJ. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol. 1989;1(3):285-96.
22- Bonaldo MC, Sequeira PC, Galler R. The Yellow fever 17D virus as a platform for new live attenuated vaccines. Human vaccines & immunotherapeutics. 2014;10(5):1256-65.
23- Guy B, Barrere B, Malinowski C, Saville M, Teyssou R, Lang J. From research to phase III: preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine. Vaccine. 2011;29(42):7229-41.
24- Brennan B, Welch SR, McLees A, Elliott RM. Creation of a recombinant Rift Valley fever virus with a two-segmented genome. Journal of virology. 2011;85(19):10310-8.
25- Rossi SL, Guerbois M, Gorchakov R, Plante KS, Forrester NL, Weaver SC. IRES-based Venezuelan equine encephalitis vaccine candidate elicits protective immunity in mice. Virology. 2013;437(2):81-8.
26- Burns CC, Shaw J, Campagnoli R, Jorba J, Vincent A, Quay J, et al. Modulation of Poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J Virol. 2006;80(7):3259-72.
27- Tatsis N, Ertl HC. Adenoviruses as vaccine vectors. Molecular Therapy. 2004;10(4):616-29.
28- Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important? Hum Vaccin Immunother. 2014;10(10):2875-84.
29- Brown F, Schild G, Ada G. Recombinant vaccinia viruses as vaccines. Nature. 1986;319(6054):549-50.
30- Smith GL, Moss B. Infectious Poxvirus vectors have capacity for at least 25 000 base pairs of foreign DNA. Gene. 1983;25(1):21-8.
31- Alcock R, Cottingham MG, Rollier CS, Furze J, De Costa SD, Hanlon M, et al. Long-term thermostabilization of live poxviral and adenoviral vaccine vectors at supraphysiological temperatures in carbohydrate glass. Science translational medicine. 2010;2(19):19ra2-ra2.
32- Volz A, Sutter G. Modified vaccinia virus Ankara: history, value in basic research, and current perspectives for vaccine development.  Adv Virus Res. 97: Elsevier; 2017. p. 187-243.
33- Nagata LP, Irwin CR, Hu WG, Evans DH. Vaccinia-based vaccines to biothreat and emerging viruses. Biotechnol Genet Eng Rev. 2018;34(1):107-21.
34- Buttigieg K, Dowall S, Findlay-Wilson S, Miloszewska A, Rayner E. A Novel Vaccine against Crimean-Congo Haemorrhagic Fever Protects. 2014.
35- Andino R, Silvera D, Suggett SD, Achacoso PL, Miller CJ, Baltimore D, et al. Engineering Poliovirus as a vaccine vector for the expression of diverse antigens. Science. 1994;265(5177):1448-51.
36- Frolov I, Agapov E, Hoffman TA, Prágai BM, Lippa M, Schlesinger S, et al. Selection of RNA replicons capable of persistent noncytopathic replication in mammalian cells. Journal of virology. 1999;73(5):3854-65.
37- Lundstrom K. Replicon RNA viral vectors as vaccines. Vaccines. 2016;4(4):39.
38- Kainulainen MH, Spengler JR, Welch SR, Coleman-McCray JD, Harmon JR, Klena JD, et al. Use of a scalable replicon-particle vaccine to protect against lethal Lassa virus infection in the guinea pig model. The Journal of infectious diseases. 2018;217(12):1957-66.
39- Halfmann P, Ebihara H, Marzi A, Hatta Y, Watanabe S, Suresh M, et al. Replication-deficient ebolavirus as a vaccine candidate. Journal of virology. 2009;83(8):3810-5.
40- Dodd KA, Bird BH, Metcalfe MG, Nichol ST, Albariño CG. Single-dose immunization with virus replicon particles confers rapid robust protection against Rift Valley fever virus challenge. Journal of virology. 2012;86(8):4204-12.
41- Buonaguro L, L Tornesello M, M Buonaguro F. Virus-like particles as particulate vaccines. Current HIV research. 2010;8(4):299-309.
42- Jain NK, Sahni N, Kumru OS, Joshi SB, Volkin DB, Middaugh CR. Formulation and stabilization of recombinant protein based virus-like particle vaccines. Advanced drug delivery reviews. 2015;93:42-55.
43- Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO molecular medicine. 2014;6(6):708-20.
44- Liu MA, Wahren B, Hedestam GBK. DNA vaccines: recent developments and future possibilities. Human gene therapy. 2006;17(11):1051-61.
45- Powell K. DNA vaccines—back in the saddle again? : Nature Publishing Group; 2004.
46- Ledgerwood JE, Pierson TC, Hubka SA, Desai N, Rucker S, Gordon IJ, et al. A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. Journal of Infectious Diseases. 2011;203(10):1396-404.
47- Martin JE, Sullivan NJ, Enama ME, Gordon IJ, Roederer M, Koup RA, et al. A DNA vaccine for Ebola virus is safe and immunogenic in a phase I clinical trial. Clin Vaccine Immunol. 2006;13(11):1267-77.
48- Boshra H, Lorenzo G, Rodriguez F, Brun A. A DNA vaccine encoding ubiquitinated Rift Valley fever virus nucleoprotein provides consistent immunity and protects IFNAR−/− mice upon lethal virus challenge. Vaccine. 2011;29(27):4469-75.
49- Porter KR, Ewing D, Chen L, Wu S-J, Hayes CG, Ferrari M, et al. Immunogenicity and protective efficacy of a vaxfectin-adjuvanted tetravalent dengue DNA vaccine. Vaccine. 2012;30(2):336-41.
50- Mallilankaraman K, Shedlock DJ, Bao H, Kawalekar OU, Fagone P, Ramanathan AA, et al. A DNA vaccine against Chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates. PLoS neglected tropical diseases. 2011; 5(1).
51- Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nature reviews Drug discovery. 2007;6(5):404-14.
52- Paris R, Bejrachandra S, Thongcharoen P, Nitayaphan S, Pitisuttithum P, Sambor A, et al. HLA class II restriction of HIV-1 clade-specific neutralizing antibody responses in ethnic Thai recipients of the RV144 prime-boost vaccine combination of ALVAC-HIV and AIDSVAX® B/E. Vaccine. 2012;30(5):832-6.
53- Sirskyj D, Diaz Mitoma F, Golshani A, Kumar A, Azizi A. Innovative bioinformatic approaches for developing peptide-based vaccines against hypervariable viruses. Immunology and cell biology. 2011;89(1):81-9.
54- Spiesschaert B, McFadden G, Hermans K, Nauwynck H, Van de Walle GR. The current status and future directions of myxoma virus, a master in immune evasion. Vet Res. 2011;42:76.
55- Rizvanov AA, Khaiboullina SF, van Geelen AG, Jeor SCS. Replication and immunoactivity of the recombinant Peromyscus maniculatus Cytomegalovirus expressing hantavirus G1 glycoprotein in vivo and in vitro. Vaccine. 2006;24(3):327-34.
56- Nuismer SL, Althouse BM, May R, Bull JJ, Stromberg SP, Antia R. Eradicating infectious disease using weakly transmissible vaccines. Proceedings of the Royal Society B: Biological Sciences. 2016;283(1841):20161903.
57- Organization WH. Polio vaccines: WHO position paper, March 2016–recommendations. Vaccine. 2017. 35(9): 9-1197.
58- Denis M, Knezevic I, Wilde H, Hemachudha T, Briggs D, Knopf L. An overview of the immunogenicity and effectiveness of current human rabies vaccines administered by intradermal route. Vaccine. 2019;37:A99-A106.
59- Elmgren L, Li X, Wilson C, Ball R, Wang J, Cichutek K, et al. A global regulatory science agenda for vaccines. Vaccine. 2013;31 Suppl 2:B163-75.
60- Shang W, Yang Y, Rao Y, Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. npj Vaccines. 2020;5(1):1-3.
61- Wrammert J, Smith K, Miller J, Langley WA, Kokko K, Larsen C, et al. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature. 2008;453(7195):667-71.
62- McLellan JS, Chen M, Leung S, Graepel KW, Du X, Yang Y, et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science. 2013;340(6136):1113-7.
63- Furman D, Davis MM. New approaches to understanding the immune response to vaccination and infection. Vaccine. 2015; 33(4081-5271).
64- Dormitzer PR. Rapid production of synthetic Influenza vaccines.  Influenza Pathogenesis and Control-Volume II: Springer; 2014. p. 237-73.
65- Joyce MG, Kanekiyo M, Xu L, Biertümpfel C, Boyington JC, Moquin S, et al. Outer domain of HIV-1 gp: 120 antigenic optimization, structural malleability, and crystal structure with antibody VRC-PG04. Journal of virology. 2013;87(4):2294-306.
66- Li L, Lok S-M, Yu I-M, Zhang Y, Kuhn RJ, Chen J, et al. The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science. 2008;319(5871):1830-4.
67- Gilbert SC, Warimwe GM. Rapid development of vaccines against emerging pathogens: The replication-deficient simian adenovirus platform technology. Vaccine. 2017;35(35):4461-4.
68- Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England Journal of Medicine. 2020.
69- Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. Clinical characteristics of 2019 novel coronavirus infection in China. MedRxiv. 2020.
70- Control CfD, Prevention. Prevention and control of seasonal Influenza with vaccines. Recommendations of the Advisory Committee on Immunization Practices-United States, 2013-2014. MMWR Recommendations and reports: Morbidity and mortality weekly report Recommendations and reports. 2013;62(RR-07):1.
71- Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9.
72- Jiang S, He Y, Liu S. SARS vaccine development. Emerging infectious diseases. 2005;11(7):1016.
73- Chan JF-W, Kok K-H, Zhu Z, Chu H, To KK-W, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections. 2020;9(1):221-36.
74- Regla-Nava JA, Nieto-Torres JL, Jimenez-Guardeño JM, Fernandez-Delgado R, Fett C, Castaño-Rodríguez C, et al. Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates. Journal of virology. 2015;89(7):3870-87.
75- Du L, He Y, Zhou Y, Liu S, Zheng B-J, Jiang S. The spike protein of SARS-CoV—a target for vaccine and therapeutic development. Nature Reviews Microbiology. 2009;7(3):226-36.
76- Graham RL, Donaldson EF, Baric RS. A decade after SARS: strategies for controlling emerging coronaviruses. Nature Reviews Microbiology. 2013;11(12):836-48.
77- Shi S-Q, Peng J-P, Li Y-C, Qin C, Liang G-D, Xu L, et al. The expression of membrane protein augments the specific responses induced by SARS-CoV nucleocapsid DNA immunization. Molecular immunology. 2006;43(11):1791-8.
78- Gralinski LE, Menachery VD. Return of the Coronavirus: 2019-nCoV. Viruses. 2020;12(2):135.
79- Yang Z-y, Kong W-p, Huang Y, Roberts A, Murphy BR, Subbarao K, et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 2004;428(6982):561-4.
80- Rauch S, Jasny E, Schmidt KE, Petsch B. New vaccine technologies to combat outbreak situations. Frontiers in immunology. 2018;9:1963.
81- Yuan J, Yang J, Hu Z, Yang Y, Shang W, Hu Q, et al. Safe staphylococcal platform for the development of multivalent nanoscale vesicles against viral infections. Nano letters. 2018;18(2):725-33.
82- Miller A, Reandelar MJ, Fasciglione K, Roumenova V, Li Y, Otazu GH. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. medRxiv. 2020.
83- Innovations CfEP. Global partnership launched to prevent epidemics with new vaccines. 2017.
84- Jones BA, Grace D, Kock R, Alonso S, Rushton J, Said MY, et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci U S A. 2013;110(21):8399-404.
85- Parrish CR, Holmes EC, Morens DM, Park EC, Burke DS, Calisher CH, et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev. 2008;72(3):457-70.
  • تاریخ دریافت: 21 فروردین 1398
  • تاریخ بازنگری: 10 اسفند 1398
  • تاریخ پذیرش: 10 اسفند 1398