تکامل ویروس‌ها و سلول‌ها: آیا برای توضیح خاستگاه یوکاریوت‌ها به دامنه چهارم نیاز داریم؟

نویسنده

سمنان، دانشگاه سمنان، دانشکده علوم، گروه زیست‌شناسی سلولی و مولکولی

چکیده

کشف اخیر ویروس‌های متنوع بسیار بزرگ از قبیل میمی ویروس (mimivirus)، این فرضیه را در اذهان متبلور ساخت که این ویروس‌ها یک دامنه (Domain) جدید را در کنار سه دامنه سلولی دیگر (Archaea‏، Bacteria و Eucarya) تشکیل می‌دهند. همچنین، فرض شده است که آنها به عنوان ارائه‌دهندگان ژن‌های مهم یا حتی برخی ساختارهای دخیل در شکل‌گیری هسته، نقشی کلیدی در خاستگاه یوکاریوت‌ها ایفا کرده‌اند. به‌واسطه افزایش دسترسی به توالی‌های ژنگان این ویروس‌های غول‌پیکر، این قبیل فرضیات را می‌توان از طریق آنالیزهای ژنگانی و تبارزایشی مقایسه‌ای به آزمون گذاشت و اصلاح کرد. نرخ تکاملی بالای ویروس‌ها که هنگام استفاده از روش‌های نامناسب به القای آرتیفکت‌های تبارزایشی از قبیل گرایش به انشعاب بلند (Long Branch Attraction) منجر می‌شود، این کار را به امری بسیار دشوار مبدل ساخته است. در آن دسته از درخت‌های تبارزایشی که از جایگاه ویروس‌ها به عنوان دامنه چهارم حیات حمایت می‌کنند، می‌توان تصنعی (artefact) بودن را نشان داد. در اغلب موارد، حضور نسخه‌های همساخت ژن‌های سلولی در ویروس‌ها به بهترین وجه با فرآیند متناوب انتقال افقی ژن (Horizontal Gene Transfer) از میزبان‌های سلولی به ویروس‌های آلوده کننده آنها، و نه در جهت عکس توجیه می‌شود. امروزه، هیچ شاهد موثقی برای وجود یک دامنه ویروسی حیات یا نقش قابل توجه ویروس‌ها در توضیح خاستگاه، دامنه‌های سلولی وجود ندارد.

کلیدواژه‌ها

  1. Bacon F. 1620 The new Organon. Aphorisms concerning the interpretation of nature and

the kingdom of man. Venice, Italy: Typis Gasparis Gerardi.

  1. Linnaeus C. 1735 Systema naturو, sive regna tria naturو systematice proposita per classes, ordines, genera, & species, 12 p. Leiden: Haak.
  2. Haeckel E. 1866 Generelle Morphologie der Organismen: Allgemeine Grundzu¨ge der organischen Formen-Wissenschaft, mechanisch begru¨ndet durch die von Charles Darwin reformirte Descendenz-Theorie, 574 p. Berlin: Georg Reimer.
  3. Whittaker RH. 1969 New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms. Science 163, 150–160. (doi:10.1126/science.163.3863.150)
  4. Stanier RY, Doudoroff M, Adelberg EA. 1957 The microbial world. Englewood Cliffs, NJ: Prentice-Hall Inc.
  5. Zuckerkandl E, Pauling L. 1965 Molecules as documents of evolutionary history. J. Theor. Biol. 8, 357–366. doi:10.1016/0022-5193(65)90083-4)
  6. Woese CR, Fox GE. 1977 Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090. (doi:10. 1073/pnas.74.11.5088)
  7. Stanier RY, Van Niel CB. 1962 The concept of a bacterium. Arch. Mikrobiol. 42, 17–35. (doi:10. 1007/BF00425185)
  8. Woese CR, Kandler O, Wheelis ML. 1990 Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579. (doi:10.1073/pnas. 87.12.4576)
  9. Embley TM, Martin W. 2006 Eukaryotic evolution, changes and challenges. Nature 440, 623–630. (doi:10.1038/nature04546)
  10. Gribaldo S, Poole AM, Daubin V, Forterre P, Brochier-Armanet C. 2010 The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nat. Rev. Microbiol. 8, 743–752. (doi:10.1038/nrmicro2426)
  11. Lombard J, Lopez-Garcia P, Moreira D. 2012 The early evolution of lipid membranes and the three domains of life. Nat. Rev. Microbiol. 10, 507–515. (doi:10.1038/nrmicro2815)
  12. Lopez-Garcia P, Moreira D. 2008 Tracking microbial biodiversity through molecular and genomic ecology. Res. Microbiol. 159, 67–73. (doi:10.1016/j. resmic.2007.11.019)
  13. Yooseph S et al. 2007 The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol. 5, e16. (doi:10.1371/journal.pbio.0050016)
  14. Edwards RA, Rohwer F. 2005 Viral metagenomics. Nat. Rev. Microbiol. 3, 504–510. (doi:10.1038/nrmicro1163)
  15. Yin Y, Fischer D. 2006 On the origin of microbial ORFans: quantifying the strength of the evidence for viral lateral transfer. BMC Evol. Biol. 6, 63. (doi:10.1186/1471-2148-6-63)
  16. Mokili JL, Rohwer F, Dutilh BE. 2012 Metagenomics and future perspectives in virus discovery. Curr. Opin. Virol. 2, 63–77. (doi:10.1016/j.coviro.2011.12.004)
  17. Mizuno CM, Rodriguez-Valera F, Kimes NE, Ghai R. 2013 Expanding the marine virosphere using metagenomics. PLoS Genet. 9, 12. (doi:10.1371/journal.pgen.1003987)
  18. Wu D, Wu M, Halpern A, Rusch DB, Yooseph S, Frazier M, Venter JC, Eisen JA. 2011 Stalking the fourth domain in metagenomic data: searching for, discovering, and interpreting novel, deep branches in marker gene phylogenetic trees. PLoS ONE 6, 0018011. (doi:10.1371/journal.pone.0018011)
  19. La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X, Drancourt M, Birtles R, Claverie JM, Raoult D. 2003 A giant virus in amoebae. Science 299, 2033. (doi:10.1126/science.1081867)
  20. Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie JM. 2004 The 1.2-megabase genome sequence of Mimivirus. Science 306, 1344–1350. (doi:10.1126/science. 1101485)
  21. Iyer LM, Balaji S, Koonin EV, Aravind L. 2006 Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res. 20, 20.
  22. Arslan D, Legendre M, Seltzer V, Abergel C, Claverie JM. 2011 Distant mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc. Natl Acad. Sci. USA 108, 17 486–17 491. (doi:10.1073/pnas.

1110889108)

  1. Colson P, Yutin N, Shabalina SA, Robert C, Fournous G, La Scola B, Raoult D, Koonin EV. 2011 Viruses with more than 1,000 genes: mamavirus, a new Acanthamoeba polyphaga mimivirus strain, and reannotation of mimivirus genes. Genome Biol. Evol. 3, 737–742. (doi:10.1093/gbe/evr048)
  2. Yoosuf N et al. 2012 Related giant viruses in distant locations and different habitats: Acanthamoeba polyphaga moumouvirus represents a third lineage of the Mimiviridae that is close to the megavirus lineage. Genome Biol. Evol. 4, 1324–1330. (doi:10. 1093/gbe/evs109).
  3. Legendre M et al. 2014 Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc. Natl Acad. Sci. USA 111, 4274–4279. (doi:10.1073/pnas. 1320670111)
  4. Philippe N et al. 2013 Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341, 281–286. (doi:10.1126/science.1239181)
  5. Boyer M, Madoui MA, Gimenez G, La Scola B, Raoult D. 2010 Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4th domain of life including giant viruses. PLoS ONE 5, e15530. (doi:10.1371/journal.pone.0015530)
  6. Colson P, Gimenez G, Boyer M, Fournous G, Raoult D. 2011 The giant Cafeteria roenbergensis virus that infects a widespread marine phagocytic protist is a new member of the fourth domain of life. PLoS ONE 6, e18935. (doi:10.1371/journal.pone.0018935).
  7. Colson P, de Lamballerie X, Fournous G, Raoult D. 2012 Reclassification of giant viruses composing a fourth domain of life in the new order Megavirales. Intervirology 55, 321–332. (doi:10.1159/000336562)
  8. Legendre M, Arslan D, Abergel C, Claverie JM. 2012 Genomics of megavirus and the elusive fourth domain of life. Commun. Integr. Biol. 5, 102–106. (doi:10.4161/cib.18624)
  9. Lo´pez-Garcı´a P. 2012 The place of viruses in biology in light of the metabolism-versus-replication-first debate. Hist. Philos. Lifg Sci. 34, 391–406.
  10. Lo´pez-Garcı´a P, Moreira D. 2012 Viruses in biology. Evo Educ. Outreach 5, 389–398. (doi:10.1007/s12052-012-0441-y).
  11. Forterre P. 2002 The origin of DNA genomes and DNA replication proteins. Curr. Opin. Microbiol. 5, 525–532. (doi:10.1016/S1369-5274(02)00360-0)
  12. Bell PJ. 2001 Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? J. Mol. Evol. 53, 251–256. (doi:10.1007/s002390010215)
  13. Takemura M. 2001 Poxviruses and the origin of the eukaryotic nucleus. J. Mol. Evol. 52, 419–425.
  14. Olsen GJ, Woese CR. 1996 Lessons from an archaeal genome: what are we learning from Methanococcus jannaschii? Trends Genet. 12, 377–379. (doi:10. 1016/0168-9525(96)30092-9)
  15. Mushegian AR, Koonin EV. 1996 A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl Acad. Sci. USA 93, 10 268–10 273. (doi:10.1073/pnas.93.19.10268).
  16. Gray MW, Lang BF. 1998 Transcription in chloroplasts and mitochondria: a tale of two polymerases. Trends Microbiol. 6, 1–3. (doi:10.1016/S0966-842X(97)01182-7).
  17. Shutt TE, Gray MW. 2006 Twinkle, the mitochondrial replicative DNA helicase, is widespread in the eukaryotic radiation and may also be the mitochondrial DNA primase in most eukaryotes. J. Mol. Evol. 62, 588–599. (doi:10.1007/s00239-005-0162-8)
  18. Forterre P. 1999 Displacement of cellular proteins by functional analogues from plasmids or viruses could explain puzzling phylogenies of many DNA informational proteins. Mol. Microbiol. 33, 457–465. (doi:10.1046/j.1365-2958.1999.01497.x)
  19. Villarreal LP, DeFilippis VR. 2000 A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. J. Virol. 74, 7079–7084. (doi:10.1128/JVI. 74.15.7079-7084.2000).
  20. Forterre P. 2006 Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc. Natl Acad. Sci. USA 103, 3669–3674. (doi:10.1073/pnas.0510333103)
  21. Holmes EC. 2003 Error thresholds and the constraints to RNA virus evolution. Trends Microbiol.

11, 543–546. (doi:10.1016/j.tim.2003.10.006).

  1. Eigen M. 1971 Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523. (doi:10.1007/ BF00623322)
  2. Koonin EV. 2003 Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Microbiol. 1, 127–136. (doi:10.1038/nrmicro751)
  3. Moreira D. 2000 Multiple independent horizontal transfers of informational genes from bacteria to plasmids and phages: implications for the origin of bacterial replication machinery. Mol. Microbiol. 35, 1–5. (doi:10.1046/j.1365-2958.2000.01692.x).
  4. Yutin N, Koonin EV. 2012 Hidden evolutionary complexity of nucleo-cytoplasmic large DNA viruses of eukaryotes. Virol. J. 9, 161. (doi:10.1186/1743-422X-9-161). 49. Mahy BWJ, Van Regenmortel MHV. 2009 Desk encyclopedia of general virology, 672 p. Oxford, UK: Elsevier.
  5. Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H, Risco C. 2005 Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol. Cell 97, 147–172. (doi:10.1042/BC20040058)
  6. McInerney JO, Martin WF, Koonin EV, Allen JF, Galperin MY, Lane N, Archibald JM, Embley TM. 2011 Planctomycetes and eukaryotes: a case of analogy not homology. Bioessays 33, 810–817. (doi:10.1002/bies.201100045).
  7. Moreira D, Lo´pez-Garcı´a P. 2005 Comment on ‘The 1.2-megabase genome sequence of Mimivirus’. Science 308, 1114. (doi:10.1126/science.1110820).
  8. Drake JW, Charlesworth B, Charlesworth D, Crow JF. 1998 Rates of spontaneous mutation. Genetics 148, 1667–1686.
  9. Awadalla P. 2003 The evolutionary genomics of pathogen recombination. Nat. Rev. Genet. 4, 50–60. (doi:10.1038/nrg964).
  10. Duffy S, Shackelton LA, Holmes EC. 2008 Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 9, 267–276. (doi:10. 1038/nrg2323)
  11. Belshaw R, Sanjuan R, Pybus OG. 2011 Viral mutation and substitution: units and levels. Curr. Opin. Virol. 1, 430–435. (doi:10.1016/j.coviro.2011. 08.004)
  12. Linz B et al. 2014 A mutation burst during the acute phase of Helicobacter pylori infection in humans and rhesus macaques. Nat. Commun. 5, 4165. (doi:10.1038/ncomms5165).
  13. Felsenstein J. 1978 Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27, 401–410. (doi:10.2307/2412923).
  14. Felsenstein J. 1981 Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376. (doi:10.1007/BF01734359).
  15. Graybeal A. 1998 Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47, 9–17. (doi:10.1080/106351598260996).
  16. Moreira D, Philippe H. 2000 Molecular phylogeny: pitfalls and progress. Int. Microbiol. 3, 9–16. 62. Philippe H, Zhou Y, Brinkmann H, Rodrigue N, Delsuc F. 2005 Heterotachy and long-branch attraction in phylogenetics. BMC Evol. Biol. 5, 50. (doi:10.1186/1471-2148-5-50).
  17. Lartillot N, Brinkmann H, Philippe H. 2007 Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7(Suppl. 1), S4. (doi:10. 1186/1471-2148-7-S1-S4).
  18. Rodrı´guez-Ezpeleta N, Brinkmann H, Roure B, Lartillot N, Lang BF, Philippe H. 2007 Detecting and overcoming systematic errors in genome-scale phylogenies. Syst. Biol. 56, 389–399. (doi:10.1080/10635150701397643).
  19. Huelsenbeck JP. 1997 Is the Felsenstein zone a fly trap? Syst. Biol. 46, 69–74. (doi:10.1093/sysbio/46.1.69).
  20. Claverie JM, Ogata H. 2009 Ten good reasons not to exclude giruses from the evolutionary picture. Nat. Rev. Microbiol. 7, 615. (doi:10.1038/nrmicro2108-c3).
  21. Lo´pez-Garcı´a P, Moreira D. 2009 Yet viruses cannot be included in the tree of life. Nat. Rev. Microbiol. 7, 615–617. (doi:10.1038/nrmicro2108-c7).
  22. Williams TA, Embley TM, Heinz E. 2011 Informational gene phylogenies do not support a fourth domain of life for nucleocytoplasmic large DNA viruses. PLoS ONE 6, 16. (doi:10.1371/annotation/53805ecf-7d10-4d99-9cec-f27f5e 0d4166)
  23. Wheeler W. 1990 Nucleic acid sequence phylogeny and random outgroups. Cladistics 6, 363–367. (doi:10.1111/j.1096-0031.1990.tb00550.x).
  24. Stiller J, Hall B. 1999 Long-branch attraction and the rDNA model of early eukaryotic evolution. Mol. Biol. Evol. 16, 1270–1279. (doi:10.1093/ oxfordjournals.molbev.a026217).
  25. Lartillot N, Philippe H. 2004 A Bayesian mixture model for across-site heterogeneities in the aminoacid replacement process. Mol. Biol. Evol. 21, 1095–1109. (doi:10.1093/molbev/msh112).
  26. Lecointre G, Philippe H, Le HLV, Le Guyader H. 1993 Species sampling has a major impact on phylogenetic inference. Mol. Phylogenet. Evol. 2, 205–224. (doi:10.1006/mpev.1993.1021).
  27. Bergsten J. 2005 A review of long-branch attraction. Cladistics 21, 163–193. (doi:10.1111/j.1096-0031. 2005.00059.x)
  28. Tidona CA, Darai G. 2000 Iridovirus homologues of cellular genes: implications for the molecular evolution of large DNA viruses. Virus Genes 21, 77–81. (doi:10.1023/A:1008192616923)
  29. Shackelton LA, Holmes EC. 2004 The evolution of large DNA viruses: combining genomic information of viruses and their hosts. Trends Microbiol. 12, 458–465. (doi:10.1016/j.tim.2004.08.005).
  30. Filee J, Siguier P, Chandler M. 2007 I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses. Trends Genet. 23, 10–15. (doi:10. 1016/j.tig.2006.11.002).
  31. Filee J, Pouget N, Chandler M. 2008 Phylogenetic evidence for extensive lateral acquisition of cellular genes by nucleocytoplasmic large DNA viruses. BMC Evol. Biol. 8, 320. (doi:10.1186/1471-2148-8-320).
  32. Moreira D, Brochier-Armanet C. 2008 Giant viruses, giant chimeras: the multiple evolutionary histories of Mimivirus genes. BMC Evol. Biol. 8, 12. (doi:10. 1186/1471-2148-8-12).
  33. Yutin N, Wolf YI, Koonin EV. 2014 Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology 467, 38–52. (doi:10.1016/j.virol.2014.06.032)
  34. Sapp J, Fox GE. 2013 The singular quest for a universal tree of life. Microbiol. Mol. Biol. Rev. 77, 541–550. (doi:10.1128/MMBR.00038-13).
  35. Williams TA, Foster PG, Cox CJ, Embley TM. 2013 An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504, 231–236. (doi:10.1038/nature12779).
  36. Spang A et al. 2015 Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179. (doi:10.1038/nature14447).
  37. Forterre P. 2006 The origin of viruses and their possible roles in major evolutionary transitions. Virus Res. 117, 5–16. (doi:10.1016/j.virusres. 2006.01.010).
  38. Forterre P, Prangishvili D. 2009 The great billionyear war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties. Ann. N.Y. Acad. Sci. 1178, 65–77. (doi:10.1111/j.1749-6632.2009.04993.x).
  39. Gortner RA. 1938 Viruses—living or non-living? Science 87, 529–530. (doi:10.1126/science.87. 2267.529).
  40. Podolsky S. 1996 The role of the virus in origin-oflife theorizing. J. Hist. Biol. 29, 79–126.
  41. Moreira D, Lo´pez-Garcı´a P. 2009 Ten reasons to exclude viruses from the tree of life. Nat. Rev. Microbiol. 7, 306–311. (doi:10.1038/nrmicro2108).
  42. Raoult D. 2009 There is no such thing as a tree of life (and of course viruses are out!). Nat. Rev. Microbiol. 7, 615. (doi:10.1038/nrmicro2108-c6).
  43. Prangishvili D. 2013 The wonderful world of archaeal viruses. Annu. Rev. Microbiol. 67, 565–585. (doi:10. 1146/annurev-micro-092412-155633)
  44. Forterre P, Krupovic M, Prangishvili D. 2014 Cellular domains and viral lineages. Trends Microbiol. 22, 554–558. (doi:10.1016/j.tim.2014.07.004).
  45. Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pasic L, Thingstad TF, Rohwer F, Mira A. 2009 Explaining microbial population genomics through phage predation. Nat. Rev. Microbiol. 7, 828–836. (doi:10.1038/nrmicro2235).
  46. Claverie JM, Abergel C. 2013 Open questions about giant viruses. Adv. Virus Res. 85, 25–56. (doi:10. 1016/B978-0-12-408116-1.00002-1)
  47. Forterre P. 2013 Why are there so many diverse replication machineries? J. Mol. Biol. 425, 4714–4726. (doi:10.1016/j.jmb.2013.09.032).
  48. Martin W, Muller M. 1998 The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41. (doi:10.1038/32096)
  49. Moreira D, Lo´pez-Garcı´a P. 1998 Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: The syntrophic hypothesis. J. Mol. Evol. 47, 517–530. (doi:10.1007/PL00006408)
  50. Lo´pez-Garcı´a P, Moreira D. 2006 Selective forces for the origin of the eukaryotic nucleus. Bioessays 28, 525–533. (doi:10.1002/bies. 20413).
  51. Guy L, Ettema TJ. 2011 The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587. (doi:10.1016/j.tim.2011.09.002).
  • تاریخ دریافت: 21 اردیبهشت 1398
  • تاریخ بازنگری: 10 اسفند 1398
  • تاریخ پذیرش: 10 اسفند 1398