20 سال با لیپیدومیکس؛ مروری بر جنبه‌های کاربردی و ابزاری

نویسندگان

سمنان، دانشگاه سمنان، دانشکده زیست فناوری میکروبی

چکیده

لیپیدومیکس به عنوان شاخه جدیدی از علم گسترده اومیکس، اخیرا مورد توجه قرار گرفته است. این علم اگرچه در دهه­های گذشته نادیده گرفته شده بود، اما به علت نقش موثری که در ایجاد فهم عمیق­تری در دانش زیست شناسی سامانه­ای و بیوشیمی کاربردی داشته است، توانسته جایگاه ویژه­ای را در بین علوم دیگر اومیکس پیدا کند. مشارکت در ساختار غشایی و ساختمانی سلول، انتقال و تنظیم پیام­رسانی سلولی و حفظ و ذخیره انرژی زیستی، همه مثال­هایی از اهمیت چربی­ها در سلول­های زنده هستند که توسعه علم لیپیدومیکس به شناخت و کنترل عوامل مؤثر بر آنها کمک می­کند. در این مقاله ضمن معرفی لیپیدومیکس و تعیین حدود آن، کاربردهای متنوع این علم در صنایع مختلف پزشکی، داروسازی، تغذیه و تولید سوخت زیستی مطرح می شود. ابزارها و روش­های مختلف شناسایی و پردازش چربی­ها شامل روش­های مبتنی بر اسپکترومتری جرمی، طیف­سنجی و کروماتوگرافی، روش­های شیمیایی و تصویربرداری در گسترش بیشتر لیپیدومیکس سهم بسزایی داشته­اند؛ این مجموعه به همراه ابزارهای کامپیوتری، بیوانفورماتیک و پایگاه­های اطلاعاتی مفصلاً توضیح داده شده­اند. تسلط بر حوزه­های متنوع علم لیپیدومیکس به صورت معنی­داری به توسعه پژوهش­های کاربردی در زمینه بهبود کمیت و کیفیت روغن­های زیستی، شناسایی علایم و نشانگرهای زیستی بیماری­های مرتبط با چربی و شناسایی مسیرهای مختلف متابولیسم چربی و آنزیم­های درگیر در آنها کمک کرده است.

کلیدواژه‌ها

  1. Navas-Iglesias N, Carrasco-Pancorbo A, Cuadros-Rodríguez L. 2009; From lipids analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part II: Analytical lipidomics. TrAC Trends in Analytical Chemistry. 28(4):393-4.
  2. Schmelzer K, Fahy E, Subramaniam S, Dennis EA. 2007; The lipid maps initiative in lipidomics. Methods in enzymology. 432:171-83.
  3. Carrasco-Pancorbo A, Navas-Iglesias N, Cuadros-Rodriguez L. 2009; From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part I: Modern lipid analysis. TrAC Trends in Analytical Chemistry. 28(3):263-78.
  4. Wenk MR. 2005;The emerging field of lipidomics. Nature reviews Drug discovery. 4(7):594-610.
  5. Dennis EA. 2009; Lipidomics joins the omics evolution. Proceedings of the National Academy of Sciences. 106(7):2089-90.
  6. Han X, Gross RW. 2003; Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry a bridge to lipidomics. Journal of lipid research. 44(6):1071-9
  7. Taguchi R, Houjou T, Nakanishi H, Yamazaki T, Ishida M, Imagawa M, et al. 2005; Focused lipidomics by tandem mass spectrometry. Journal of Chromatography B. 823(1):26-36.
  8. Merrill AH, et al Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS. 2010;Lipidomics reveals a remarkable diversity of lipids in human plasma. Journal of lipid research. 51(11):3299-305.
  9. Rolim AEH, Henrique-Araújo R, Ferraz EG, Dultra FKdAA, Fernandez LG. 2015; Lipidomics in the study of lipid metabolism: Current perspectives in the omic sciences. Gene. 554(2):131-9.
  10. Jones JJ, Borgmann S, Wilkins CL, O'Brien RM. 2006; Characterizing the phospholipid profiles in mammalian tissues by MALDI FTMS. Analytical chemistry. 78(9):3062-71.
  11. Hyötyläinen T, Bondia‐Pons I, Orešič M. 2013;Lipidomics in nutrition and food research. Molecular nutrition & food research. 57(8):1306-18.
  12. Batoy SMA, Borgmann S, Flick K, Griffith J, Jones JJ, Saraswathi V, et al. 2009; Lipid and phospholipid profiling of biological samples using MALDI Fourier transform mass spectrometry. Lipids. 44(4):367-71.
  13. Houjou T, Yamatani K, Imagawa M, Shimizu T, Taguchi R. 2005; A shotgun tandem mass spectrometric analysis of phospholipids with normal‐phase and/or reverse‐phase liquid chromatography/electrospray ionization mass spectrometry. Rapid communications in mass spectrometry. 19(5):654-66.
  14. Stübiger G, Belgacem O, Rehulka P, Bicker W, Binder BR, Bochkov V. 2010; Analysis of oxidized phospholipids by MALDI mass spectrometry using 6-aza-2-thiothymine together with matrix additives and disposable target surfaces. Analytical chemistry. 82(13):5502-10.
  15. Rainville PD, Stumpf CL, Shockcor JP, Plumb RS, Nicholson JK. 2007; Novel application of reversed-phase UPLC-oaTOF-MS for lipid analysis in complex biological mixtures: A new tool for lipidomics. Journal of Proteome Research. 6(2):552-8.
  16. Rapaka RS, Piomelli D, Spiegel S, Bazan N, Dennis EA. 2005; Targeted lipidomics: mediators. 77(1):223-34. other lipid & signaling lipids and drugs of abuse. Prostaglandins
  17. Han X, Gross RW. 2005; Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert review of proteomics. 2(2):253-64.
  18. Han X, Gross RW. 2005; Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass spectrometry reviews. 24(3):367-412.
  19. Talebi AF, Tabatabaei M, Chisti Y. 2014;BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel. Biofuel Research Journal. 1(2):55-7.
  20. Yetukuri L, Katajamaa M, Medina-Gomez G, Seppänen-Laakso T, Vidal-Puig A, Orešič M. 2007; Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Systems Biology. 1(1):1.
  21. Fahy E, Cotter D, Byrnes R, Sud M, Maer A, Li J, et al. 2007; Bioinformatics for lipidomics. Methods in enzymology. 432:247-73.
  22. Hou W, Zhou H, Elisma F, Bennett SA, Figeys D. 2008; Technological developments in lipidomics. Briefings in functional genomics & proteomics. 7(5):395-409.
  23. Katajamaa M, Orešič M. 2005; Processing methods for differential analysis of LC/MS profile data. BMC bioinformatics. 6(1):1.
  24. Katajamaa M, Miettinen J, Orešič M. 2006; MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics. 22(5):634-6.
  25. Cvačka J, Krafkova E, Jiroš P, Valterova I. 2006; Computer‐assisted interpretation of atmospheric pressure chemical ionization mass spectra of triacylglycerols. Rapid communications in mass spectrometry. 20(23):3586-94.
  26. Haimi P, Uphoff A, Hermansson M, Somerharju P. 2006; Software tools for analysis of mass spectrometric lipidome data. Analytical chemistry. 7831-8324:(24)
  27. Subramaniam S, Fahy E, Gupta S, Sud M, Byrnes RW, Cotter D, et al. 2011;Bioinformatics and systems biology of the lipidome. Chemical reviews. 111(10):6452-90.
  28. Niemelä PS, Castillo S, Sysi-Aho M, Orešič M. Bioinformatics and computational methods for lipidomics. Journal of Chromatography B. 2009;877(26):2855-62.
  29. Orešič M, Hänninen VA, Vidal-Puig A. Lipidomics: a new window to biomedical frontiers. Trends in biotechnology. 2008;26(12):647-52.
  30. Feng L, Prestwich GD. 2005; Functional lipidomics: CRC Press.
  31. Welti R, Wang X. Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Current opinion in plant biology. 2044-337(3)7;04.
  32. Vihervaara T, Suoniemi M, Laaksonen R. Lipidomics in drug discovery. Drug discovery today. 2014;19(2):164-70.
  33. Yang K, Han X. 2016; Lipidomics: Techniques, applications, and outcomes related to biomedical sciences. Trends in Biochemical Sciences.
  34. Vaidyanathan S, Harrigan GG, Goodacre R. 2006; Metabolome Analyses: Strategies for Systems Biology: Springer Science & Business Media.
  35. Kolak M, Westerbacka J, Velagapudi V, Wågsäter D, Yetukuri L, Makkonen J, et al. Lindell M, Bergholm R, Hamsten A. Eriksson P, Fisher RM. Oresic M, Yki-Järvinen H. 2007; Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity. Diabetes. 56:1960-8.
  36. Han X, Yang J, Yang K, Zhao Z, Abendschein DR, Gross RW. 2007; Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: a shotgun lipidomics study. Biochemistry. 46(21):6417-28.

37 .Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HW, et al. 2002; Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature medicine. 8(12):1439-45.

38 .Beger RD, Schnackenberg LK, Holland RD, Li D, Dragan Y. 2006; Metabonomic models of human pancreatic cancer using 1D proton NMR spectra of lipids in plasma. Metabolomics. 2(3):125-34.

  1. Xiao Y-j, Schwartz B, Washington M, Kennedy A, Webster K, Belinson J, et al. 2001; Electrospray ionization mass spectrometry analysis of lysophospholipids in human ascitic fluids: comparison of the lysophospholipid contents in malignant vs nonmalignant ascitic fluids. Analytical biochemistry. 290(2):302-13.

40 .Natarajan K, Mori N, Artemov D, Aboagye E, Chacko V, Bhujwalla Z. 2000; Phospholipid profiles of invasive human breast cancer cells are altered towards a less invasive phospholipid profile by the anti-inflammatory agent indomethacin. Advances in enzyme regulation. 40(1):271-84.

  1. Fuchs B, Schiller J, Wagner U, Häntzschel H, Arnold K. 2005; The phosphatidylcholine/ lysophosphatidylcholine ratio in human plasma is an indicator of the severity of rheumatoid arthritis: investigations by 31 P NMR and MALDI-TOF MS. Clinical biochemistry. 38(10):925-33.
  2. 42. Jia L, Wang C, Zhao S, Lu X, Xu G. 2007; Metabolomic identification of potential phospholipid biomarkers for chronic glomerulonephritis by using high performance liquid chromatography–mass spectrometry. Journal of Chromatography B. 860(1):134-40.
  3. Han X, Yang J, Cheng H, Yang K, Abendschein DR, Gross RW. 2005; Shotgun lipidomics identifies cardiolipin depletion in diabetic myocardium linking altered substrate utilization with mitochondrial dysfunction. Biochemistry. 44(50):16684-94.
  4. Li Q, Zhang Q, Wang M, Zhao S, Xu G, Li J. 2008; n-3 polyunsaturated fatty acids prevent disruption of epithelial barrier function induced by proinflammatory cytokines. Molecular immunology. 45(5):1356-65.
  5. Kulik W, van Lenthe H, Stet FS, Houtkooper RH, Kemp H, Stone JE, et al. 2008; Bloodspot assay using HPLC–tandem mass spectrometry for detection of Barth syndrome. Clinical chemistry. 54(2):371-8.

46 .Fujiwaki T, Yamaguchi S, Tasaka M, Sakura N, Taketomi T. 2002; Application of delayed extraction–matrix-assisted laser desorption ionization time-of-flight mass spectrometry for analysis of sphingolipids in pericardial fluid, peritoneal fluid and serum from Gaucher disease patients. Journal of Chromatography B. 776(1):115-23.

47 .Han X, M Holtzman D, W McKeel D, Kelley J, Morris JC. 2002; Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer's disease: potential role in disease pathogenesis. Journal of neurochemistry. 82(4):809-18.

48 .Murphy SA, Nicolaou A. 2013; Lipidomics applications in health, disease and nutrition research. Molecular nutrition & food research. 57(8):13.46-36.

  1. Uauy R, Dangour AD. 2006; Nutrition in brain development and aging: role of essential fatty acids. Nutrition reviews. 64(suppl 2):S24-S33.
  2. Mastronicolis S, Arvanitis N, Karaliota A, Magiatis P, Heropoulos G, Litos C, et al. 2008; Coordinated regulation of cold-induced changes in fatty acids with cardiolipin and phosphatidylglycerol composition among phospholipid species for the food pathogen Listeria monocytogenes. Applied and environmental microbiology. 74(14):4543-9.
  3. Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini M, et al. 2013; Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Research. 2(3):258-67.
  4. Stengel DB, Connan S, Popper ZA. 2011; Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnology advances. 29(5):483-501.
  5. Ibañez E, Cifuentes A. 2013; Benefits of using algae as natural sources of functional ingredients. Journal of the Science of Food and Agriculture. 93(4):703-9.
  6. Holdt SL, Kraan S. 2011; Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology. 23(3):543-97.
  7. Kumari P, Bijo A, Mantri VA, Reddy C, Jha B. 2013; Fatty acid profiling of tropical marine macroalgae: an analysis from chemotaxonomic and nutritional perspectives. Phytochemistry. 86:44-56.
  8. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. 2006; Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of sciences. 103(30):11206-10.
  9. Chiu S-Y, Kao C-Y, Chen T-Y, Chang Y-B, Kuo C-M, Lin C-S. 2015; Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresource technology. 184:179-89.
  10. Yunos NSHM, Chu CJ, Baharuddin AS, Mokhtar MN, Sulaiman A, Rajaeifar MA, et al. 2017; Enhanced oil recovery and lignocellulosic quality from oil palm biomass using combined pretreatment with compressed water and steam. Journal of Cleaner Production. 142:3834-49.
  11. 59. Talebi AF, Dastgheib SMM, Tirandaz H, Ghafari A, Alaie E, Tabatabaei M. 2016; Enhanced algal-based treatment of petroleum produced water and biodiesel production. RSC Advances. 69-47001:(52).
  12. Talebi AF, Tohidfar M, Mousavi Derazmahalleh SM, Sulaiman A, Baharuddin AS, Tabatabaei M. 2015; Biochemical modulation of lipid pathway in microalgae Dunaliella sp. for biodiesel production. BioMed research international. 2015.
  13. 61. Talebi AF, Tohidfar M, Bagheri A, Lyon SR, Salehi-Ashtiani K, Tabatabaei M. 2014; Manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME genes to enhance lipid content and to improve produced biodiesel quality. Biofuel Research Journal. 1(3):91-7.
دوره 2، شماره 3.4
1397
صفحه 99-112
  • تاریخ دریافت: 27 بهمن 1396
  • تاریخ بازنگری: 27 فروردین 1397
  • تاریخ پذیرش: 27 فروردین 1397