نقش سیستم های انتقال دهنده عصبی مغز در فراموشی ناشی از استرس

نویسندگان

1 دانشگاه تهران

2 تهران، دانشگاه تهران، پردیس علوم، دانشکده زیست شناسی

چکیده

قرار گرفتن در شرایط استرس­زا با فعال نمودن محور هیپوتالاموس-هیپوفیز-آدرنال باعث رهایی هورمون‏های استرس مانند نور اپی نفرین و گلوکوکورتیکوئیدها می‏شود. تشکیلات هیپوکامپ و آمیگدال به عنوان ساختارهای لیمبیک که در شکل‏گیری یادگیری و حافظه نقش بسیار مهمی دارند، دارای بیان بالایی از گیرنده‏های هورمون‏های استرس هستند و بنابراین به شدت تحت تاثیر استرس قرار می گیرند. تشکیل حافظه یکی از مهمترین و اصلی‏ترین فرایندهای ذهنی است که بدون آن بکارگیری آسانترین رفلکس‏های ساده و رفتارهای کلیشه ای میسر نیست.بنا به اهمیت موضوع ، در مطالعه حاضر سیستم های انتقال دهنده های عصبی در جایگاه های مختلف مغزی که در یادگیری و حافظه دخالت بسزایی دارند همراه با بر همکنش آن­ها با استرس مورد بررسی قرار گرفته است.

کلیدواژه‌ها

  1. Kim J.J and Diamond D.M. The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev. Neurosci, 2002; 3: 453–462.
  2. Tsigos C, Chrousos G.P. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, 2002; 53: 865– 871.
  3. Nijholt I, Farchi N, Kye M, Sklan EH, Shoham S, Verbeure B, Owen D, Hochner B, Spiess J, Soreq H, Blank T. Stress-induced alternative splicing of acetylcholinesterase results in enhanced fear memory and long-term potentiation. Mol Psychiatry, 2004; 9:174–183.
  4. Segev A, Ramot A, Akirav I. Stress hormones receptors in the amygdala mediate the effects of stress on the consolidation, but not the retrieval, of a non aversive spatial task. PLoS ONE, 2012; 7:11. e31731.
  5. Beylin AV, Shors TJ. Stress enhances excitatory trace eyeblink conditioning and opposes acquisition of inhibitory conditioning. Behav Neurosci, 1998; 112:1327–1338.
  6. Izumi Y, Auberson YP, Zorumski CF. Zinc modulates bidirectional hippocampal plasticity by effects on NMDA receptors. J Neurosci 2006; 26(27):7181-88.
  7. Andersen P, Morris R, Amaral D, Bliss T, Okeefe J. The hippocampus book. Oxford university press, 2007.
  8. McEwen BS. Possible mechanisms for atrophy of the human hippocampus. Mol Psychiatry 1997;2:255 –62.
  9. Starkman MN, Giordani B, Gebarski SS, Berent S, Schork MA, Schteingart DE. Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing’s disease. Biol Psychiatry, 1999;15:1595– 602.
  10. Fuchs E, Gould E. In vivo neurogenesis in the adult brain: regulation and functional implications. Eur J Neurosci 2000;12:2211 – 4.
  11. Krettek JE and Price JL (1978) A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections. J Comp Neurol 178(2):255-80.
  12. Maren S and Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci. 5(11):844-52.
  13. Roozendaal B, McEwen BS, Chattarji S. Stress, memory and the amygdala. Nat Rev Neurosci, 2009; 10:423-33.
  14. Roozendaal B and McGaugh JL (1997) Basolateral amygdala lesions block the memory-enhancing effect of glucocorticoid administration in the dorsal hippocampus of rats. Eur J Neurosci 9(1):76-83.
  15. Mora F, Segovia G, del Arco A, de Blas M, Garrido P. Stress, neurotransmitters, corticosterone and body–brain integration. BRES, 2012; 41993:15; 43.
  16. Young AB, Chu D. Distribution of GABA, and GABA receptors in mammalian brain: Potential targets for drug development. Drug Development Research, 1990; 21: 161-167.
  17. Sanders SK and Shekhar A (1995) Regulation of anxiety by GABAA receptors in the rat amygdala. Pharmacol Biochem Behav 52(4):701-6.
  18. Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2004) Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 84(3):835-67.
  19. Izquierdo I and Medina JH .GABAA receptor modulation of memory: the role of endogenous benzodiazepines. Trends Pharmacol Sci, 1991;12:260-5.
  20. de Groote L and Linthorst AC (2007) Exposure to novelty and forced swimming evoke stressor-dependent changes in extracellular GABA in the rat hippocampus. Neuroscience 148(3):794-805.
  21. Saulskaya N, Marsden CA. Extracellular glutamate in the nucleus accumbens during a conditioned emotional response in the rat. Brain Res, 1995; 698:114–120.
  22. Herman JP, Mueller NK, Figueiredo H. Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration. Ann N Y Acad Sci, 2004:35–45.
  23. Bhatnagar S, Vining C, Denski K. Regulation of chronic stress-induced changes in hypothalamic-pituitary-adrenal activity by the basolateral amygdala. Ann N Y Acad Sci, 2004,1032:315–319.
  24. Cook CJ. Stress induces CRF release in the paraventricular nucleus, and both CRF and GABA release in the amygdala. Physiol Behav, 2004; 82:751–762.
  25. Majewska MD, Bisserbe JC, Eskay RL. Glucocorticoids are modulators of GABAA receptors in brain. Brain Res, 1985; 339:178–182.
  26. Wisłowska-Stanek A, Lehner M, Skórzewska A, Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Płaźnik A.Corticosterone attenuates conditioned fear responses and potentiates the expression of GABA-A receptor alpha-2 subunits in the brain structures of rats selected for high anxiety. Behav Brain Res, 2012; 235:30–35.
  27. Miller AN, Chaptal C, McEwen BS, Peck EJ Jr. Modulation of high affinity GABA uptake into hippocampal synaptosomes by glucocorticoids. Psychonewoendocrinol,1978; 20: 445–468.
  28. Sardari M, Rezayof A, Khodagholi F, Zarrindast MR. Basolateral amygdala GABA-A receptors mediate stress-induced memory retrieval impairment in rats. Int J Neuropsychopharmacol 2014; 17(4):603-12.
  29. Traynelis SFWollmuth LPMcBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev.2010; 62(3):405-96.
  30. Cottrell JR, Dubé GR, Egles C, Liu G. Distribution, density, and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons. J Neurophysiol. 2000 Sep; 84(3):1573-87.
  31. Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol. 2012; 1;4(6).
  32. Gould E, Tanapat P. Stress and hippocampal neurogenesis. Biol Psychiatry, 1999;46(11): 1472-9.
  33. Reznikov LR, Grillo CA, Piroli GG, Pasumarthi RK, Reagan LP, Fadel J. Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment. Eur J Neurosci, 2007; 25:3109-14.
  34. Rodriguez Manzanares PA, Isoardi NA, Carrer HF, Molina VA. Previous stress facilitates fear memory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala. J Neurosci, 2005; 25:8725–8734.
  35. Wong TP, Howland JG, Robillard JM, Ge Y, Yu W, Titterness AK, Brebner K, Liu L, Weinberg J, Christie BR, Phillips AG, Wang YT. Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. ProcNatlAcadSci USA, 2007; 104:11471-11476.
  36. Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav, 2002; 71:533-554.
  37. Parsons LH, Kerr TM, Tecott LH. 5-HT(1A) receptor mutant mice exhibit enhanced tonic, stress-induced and fluoxetine-induced serotonergic neurotransmission. J Neurochem, 2001;77:607-17.

38 Ogren SO, Eriksson TM, Elvander-Tottie E, D'Addario C, Ekström JC, Svenningsson P, Meister B, Kehr J, Stiedl O. The role of 5-HT(1A) receptors in learning and memory. Behav Brain Res, 2008;195:54-77.

  1. Aghajanian GK, Lakoski JM. Hyperpolarization of serotonergic neurons by serotonin and LSD: studies in brain slices showing increased K+ conductance. Brain Res, 1984; 305:181-185.
  2. Meneses A, Perez-Garcia G. 5-HT1A receptors and memory. Neurosci Biobehav Rev, 2007; 31:705–727.
  3. Winsauer PJ, Rodriguez FH, Cha AE, Moerschbaecher JM. Full and partial 5-HT1A receptor agonists disrupt learning and performance in rats. J Pharmacol Exp Ther, 1999; 288:335-347.
  4. Chaouloff F, Berton O and Mormède P. Serotonin and Stress. Neuropsychopharmacology, 1999; 21-2S.
  5. Chaouloff F. Physiopharmacological interactions between stress hormones and central serotonergic systems. Brain Res Rev, 1993; 18:1–32.
  6. Mitsushima D, Yamada K, Takase K, Funabashi T and Kimura F. Sex differences in the basolateral amygdala: the extracellular levels of serotonin and dopamine, and their responses to restraint stress in rats. European Journal of Neuroscience, 2006; 24:3245–3254.
  7. Ahmed T, Frey JU, Korz V. Long-term effects of brief acute stress on cellular signaling and hippocampal LTP. J Neurosci, 2006; 26:3951–3958.
  8. Tan H, Zhong P, Yan Z. Corticotropin-releasing factor and acute stress prolongs serotonergic regulation of GABA transmission in prefrontal cortical pyramidal neurons. J Neurosci, 2004; 24:5000-5008.
  9. Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC. A parametric study of prefrontal cortex involvement in human working memory.Neuroimage, 1997; 5:49-62.
  10. Lowry CA. Functional subsets of serotonergic neurones: implications for control of the hypothalamic–pituitary–adrenal axis. J. Neuroendocrinol, 2002; 14:911–923.
  11. Shakesby ACAnwyl RRowan MJ. Overcoming the effects of stress on synaptic plasticity in the intact hippocampus: rapid actions of serotonergic and antidepressant agents. J Neurosci. 2002 ;22(9):3638-44.
  12. Chaouloff, F., Regulation of 5-HT receptors by corticosteroids: Where do we stand? Fundam. Clin. Pharmacol, 1995;9: 219-233.
  13. Klaassen T, Riedel WJ, van Praag HM, Menheere PP, Griez E. Neuroendocrine response to meta-chlorophenylpiperazine and ipsapirone in relation to anxiety and aggression. Psychiatry Res, 2002;113, 29–40.
  14. Porter RJ, Gallagher P, Watson S, Young, AH. Corticosteroid–serotonin interactions in depression: a review of the human evidence. Psychopharmacology (Berl.), 2004; 173, 1–17.
  15. Pertwee RG. The pharmacology of cannabinoid receptors and their ligands: an overview. Int J Obes (Lond). 2006;30 Suppl 1:S13-8.
  16. Pagotto U, Cervino C, Vicennati V, Marsicano G, Lutz B, Pasquali R. How many sites of action for endocannabinoids to control energy metabolism? Int J Obes (Lond). 2006; 1,S39-43.
  17. Heyser CJ, Hampson RE, Deadwyler SA. Effects of delta-9-tetrahydrocannabinol on delayed match to sample performance in rats: alterations in short-term memory associated with changes in task specific firing of hippocampal cells. J Pharmacol Exp Ther. 1993; 264, 294-307.
  18. Nakamura EM, da Silva EA, Concilio GV, Wilkinson DA, Masur J. Reversible effects of acute and long-term administration of delta-9-tetrahydrocannabinol (THC) on memory in the rat. Drug Alcohol Depend. 1991; 28,167-75.
  19. Ferrari F, Ottani A, Vivoli R, Giuliani D. Learning impairment produced in rats by the cannabinoid agonist HU 210 in a water-maze task. Pharmacol Biochem Behav. 1999; 64, 555-61.
  20. Ranganathan M, D'Souza DC. The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology (Berl). 2006;188, 425-44.
  21. Ganon-Elazar E and Akirav I. Cannabinoid Receptor Activation in the Basolateral Amygdala Blocks the Effects of Stress on the Conditioning and Extinction of Inhibitory Avoidance. The Journal of Neuroscience. 2009; 29, 11078 –11088.
  22. Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ. (2004) Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology. 145, 5431-8.
  23. Mohammadmirzaei NRezayof AGhasemzadeh Z. Activation of cannabinoid CB1 receptors in the ventral hippocampus improved stress-induced amnesia in rat. Brain Res.2016 Sep 1;1646:219-26.
  24. Saal DDong YBonci AMalenka RC. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron. 2003; 37(4):577-82.
  25. Andersen PH, Gingrich JA, Bates MD, and Dearry A, Falardeau P, Senogles SE,Caron MG. "Dopamine receptor subtypes: beyond the D1/D2 classification." Trends Pharmacol Sci 11 (1990): 231–236.
  26. Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L. Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology. 1994 Dec; 11(4): 245-56.
  27. Farahmandfar MBakhtazad AAkbarabadi A, Zarrindast MR. The influence of dopaminergic system in medial prefrontal cortex on ketamine-induced amnesia in passiveavoidance task in mice. Eur J Pharmacol.2016 ;781:45-52.
  28. Péczely LOllmann TLászló KKovács AGálosi RKertes EZagorácz OKállai VKarádi ZLénárd L. Role of ventral pallidal D2 dopamine receptors in the consolidation of spatial memory. Behav Brain Res.2016;313:1-9.
  29. Li Y, Ge S, Li N, Chen L, Zhang S, Wang J, Wu H, Wang X, Wang X. NMDA and dopamine D1 receptors within NAc-shell regulate IEG proteins expression in reward circuit during cocaine memory reconsolidation. Neuroscience. 2016 Feb 19; 315:45-69
  30. Sanchez CJ, Bailie TM, Wu WR, Li N, Sorg BA. Manipulation of dopamine d1 like receptor activation in the rat medial prefrontal cortex alters stress and cocaine-induced reinstatement of conditioned place preference behavior.Neuroscience. 2003;119(2):497-505.
  31. Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui DH, Tabira T. Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J Neurosci. 2000; 20(4):1568-74.
  32. Scornaiencki R, Cantrup R, Rushlow WJ, Rajakumar N. Prefrontal cortical D1 dopamine  receptors modulate subcortical D2 dopamine receptor-mediated stress responsiveness. Int J Neuropsychopharmacol. 2009;12(9):1195-208.
  33. Sardari MRezayof AZarrindast MR. 5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats. Neuroscience.2015 Aug 6;300:609-18.
  34. Izquierdo I. Effect of b-endorphin and naloxone on acquisition, memory, and retrieval shuttle avoidance and habituation learning in rats. Psychopharmacology, (Berl) 1980; 69:111–115.
  35. Yang Y, Cao J, Xiong W, Zhang J, Zhou Q, Wei H, Liang C, Deng J, Li T, Yang S, Xu L. Both stress experience and age determine the impairment or enhancement effect of stress on spatial memory retrieval. J Endocrinol, 2003; 178:45-54.
  36. Homayoun H, Khavandgar S, Zarrindast MR. Morphine state-dependent learning: interactions with alpha2-adrenoceptors and acute stress. Behav Pharmacol. 2003;14:41-8.
  37. Shors TJ, Elkabes S, Selcher JC, Black IB. Stress persistently increases NMDA receptor-mediated binding of (3H)PDBu (a marker for protein kinase C) in the amygdala, and re-exposure to the stressful context reactivates the increase. Brain Res. 1997;750:293-300.
دوره 2، شماره 3.4
1397
صفحه 81-92
  • تاریخ دریافت: 02 دی 1396
  • تاریخ بازنگری: 02 مرداد 1398
  • تاریخ پذیرش: 02 مرداد 1398